「 1998 THE MOTOR INDUSTRY OF J APAN

Introduction

This booklet offers our readers a brief overview of the Japanese automobile industry today. It contains a wide range of pertinent statistics on the industry's status and looks at relevant trends and developments.

The Japan Automobile Manufacturers Association, Inc. (JAMA) aims to facilitate understanding of the Japanese auto industry by providing helpful insights into the industry. We hope that you will find this publication informative, and we welcome your questions and comments.

Japan Automobile Manufacturers Association, Inc.

Head Office

Otemachi Bldg., 6-1,Otemachi 1-chome
Chiyoda-ku,Tokyo 100-0004 Japan
Tel: +81-(3)-5219-6655
Telefax: +81-(3)-3287-2073

Washington Office

1050 17th Street, N.W., Suite 410
Washington, D.C. 20036, U.S.A.
Tel: +1-(202)-296-8537
Telefax: +1-(202)-872-1212

European Office

Avenue Louise 327
1050 Brussels, Belgium
Tel: +32-(2) -639-1430
Telefax: +32-(2)-647-5754

Singapore Representative Office

143 Cecil Street \#09-03/04
GB BIdg., Singapore 069542
Tel: +65-221-5057
Telefax: +65-221-5072

JAMA Associate Offices

Japan Automobile Manufacturers
Association of Canada
151 Bloor Street West, Suite 460
Toronto, Ontario M5S 1S4 Canada
Tel: +1-(416)-968-0150
Telefax: +1-(416)-968-7095

JAMA Informationsbüro Deutschland

Meckenheimer Allee 67-69
53115 Bonn, Germany
Tel: +49-(228)-76682-74
Telefax: +49-(228)-76682-75

Contents

1997 In Summary 3
MOTOR VEHICLES
Production 4
Domestic Sales 5
Imported Car Sales 6
Car Market Sectors 7
Exports 8
In Use and Cars Per Capita 9
MOTORCYCLES
Production and Domestic Sales 10
Exports 11
GLOBAL ACTIVITIES
North American Manufacturing Operations 12
European Manufacturing Operations 14
Asian Manufacturing Operations 16
International Automotive Industry Ties 17
STANDARDS AND REGULATIONS
Motor Vehicle Classification 20
Domestic Taxes on Automobiles 21
Automobile Certification and Standards 22
Laws and Regulations Concerning Automobiles 24
SOCIAL CONCERNS
Attention to the Environment 25
Traffic Safety 28
Intelligent Transport Systems 29
AUTOMOBILES AND THE ECONOMY
Automotive Shipments in Value Terms 30
Automotive Trade 31
MISCELLANEOUS
JAMA Organization and Information Services 32
Significant Events of 1997 33
Member Manufacturers 34
Plant Locations of Member Manufacturers in Japan 35
Related Automotive Associations 36

Passenger Car Classifications

Throughout this booklet, passenger cars are referred to as standard, small or mini cars. These categories are based primarily on engine displacement: standard is over 2000cc, small is 661-2000cc, and mini is 660cc and under.

Most passenger cars in Japan are in the small category, but the other two sectors have been expanding in recent years. For more details, see Motor Vehicle Classification on page 20 and Car Market Sectors on page 7.

1997 In Summary

SUMMARY: 1997 DOMESTIC PERFORMANCE					
AND EXPORTS					
	Cars	Trucks	Buses	Total	
Production	$8,491,440$	$2,421,413$	62,234	$10,975,087$	
	$\mathbf{+ 8 . 0 \%}$	$\mathbf{- 0 . 3 \%}$	$\mathbf{+ 1 7 . 1 \%}$	$\mathbf{+ 6 . 1 \%}$	
New	$4,492,006$	$2,217,257$	15,763	$6,725,026$	
Registrations	$\mathbf{- 3 . 8 \%}$	$\mathbf{- 7 . 3 \%}$	$-\mathbf{8 . 5 \%}$	$\mathbf{- 5 . 0 \%}$	
Exports	$3,578,658$	919,908	54,602	$4,553,168$	
	$\mathbf{+ 2 5 . 1 \%}$	$\mathbf{+ 1 3 . 9 \%}$	$\mathbf{+ 2 4 . 5 \%}$	$\mathbf{+ 2 2 . 7 \%}$	

Notes: 1. New registrations include imported vehicles.
2. Percentage figures represent the change from the preceding year. Sources: Japan Automobile Manufacturers Association, Japan Automobile Dealers Association, Japan Mini-Vehicles Association.

JAPAN'S CAR/TRUCK/BUS PRODUCTION, SALES AND EXPORTS BY MAKE (1997)			
	Production	Sales	Exports
Cars	374,174	275,211	74,252
Trucks	178,733	173,114	29,793
Daihatsu	552,947	448,325	104,045
Cars	334,263	204,723	122,734
Trucks	95,255	100,760	120
Fuji	429,518	305,483	122,854
Trucks	67,845	41,952	24,679
Buses	6,663	2,554	4,308
Hino	74,478	44,506	28,987
Cars	1,186,343	647,034	544,476
Trucks	120,696	124,774	-
Honda	1,307,039	771,808	544,476
Cars	25,532	3,110	29,997
Trucks	330,710	118,453	191,395
Buses	3,458	1,517	2,574
Isuzu	359,700	123,080	223,966
Cars	688,478	225,009	447,637
Trucks	180,455	112,170	90,330
Buses	76		3,384
Mazda	869,009	337,179	541,351
Cars	820,703	344,928	390,882
Trucks	411,436	328,926	158,482
Buses	7,443	5,028	2,265
Mitsubishi	1,239,582	678,882	551,629
Cars	1,511,702	744,386	597,571
Trucks	206,875	287,550	89,659
Buses	7,054	1,802	4,745
Nissan	1,725,631	1,033,738	691,975
Trucks	45,883	29,169	18,814
Buses	3,106	856	2,230
Nissan Diesel	48,989	30,025	21,044
Cars	640,778	382,228	210,896
Trucks	225,552	213,587	17,637
Suzuki	866,330	595,815	228,533
Cars	2,910,107	1,323,879	1,160,213
Trucks	557,475	663,427	298,999
Buses	34,464	3,997	35,096
Toyota	3,502,046	1,991,303	1,494,308
Other (Imports)	458	364,882	-
Total Cars	8,492,080	4,492,003	3,578,658
Total Trucks	2,421,413	2,217,260	919,908
Total Buses	62,234	15,763	54,602
Total	10,975,727	6,725,026	4,553,168

Sources: Japan Automobile Manufacturers Association, Japan Automobile Dealers Association, Japan Mini-Vehicles Association.

SUMMARY: 1997 DOMESTIC MOTORCYCLE PERFORMANCE AND EXPORTS

	50cc \& under	Over 50cc	Total
Production	933,921	$1,741,762$	$2,675,683$
	-1.5%	$+6.5 \%$	$+3.5 \%$
Demand	864,396	324,135	$1,188,531$
in Japan	-1.4%	-5.7%	$\mathbf{- 2 . 6 \%}$
Exports	864,395	323,843	$1,188,238$
	$\mathbf{+ 3 7 . 3 \%}$	$\mathbf{+ 6 . 3 \%}$	$\mathbf{+ 7 . 5 \%}$

Note: Percentage figures represent the change from the preceding year. Source: Japan Automobile Manufacturers Association.

JAPAN'S TOP SELLERS

		1997	\% Change from 1996
1	Toyota Corolla	238,098	+6.7
2	Nissan March	143,965	+9.2
3	Toyota Mark II	126,656	+10.6
4	Toyota Starlet	117,182	-3.8
5	Honda Step Wagon	109,894	+33.5
6	Toyota Crown	109,711	-20.3
7	Toyota Ipsum	92,822	+4.6
8	Mazda Demio	88,293	+208.4
9	Honda Odyssey	82,350	-25.3
10	Nissan Sunny	71,384	-23.8
11	Honda S-MX	69,910	N.A.
12	Honda Logo	68,002	+265.3
13	Subaru Legacy	66,576	-27.2
14	Toyota Camry	63,241	+40.7
15	Toyota Carina	59,884	-18.2
16	Nissan Pulsar	58,788	-11.6
17	Mitsubishi Legnum	58,304	+240.0
18	Toyota Corona	57,323	-33.8
19	Toyota Caldina Wagon	54,999	-19.5
20	Nissan Cefiro	51,098	+10.6
21	Honda Civic	50,530	-26.5
22	Toyota Sprinter	50,020	-27.6
23	Nissan Stagea	48,347	+168.5
24	Toyota Chaser	47,492	+13.5
25	Honda CR-V	44,651	-56.6
26	Nissan Bluebird	43,561	-30.4
27	Nissan Primera	42,169	+6.1
28	Nissan Wingroad	41,650	+33.7
29	Subaru Impreza	38,986	-4.3
30	Toyota Corsa	38,089	-17.8

Note: N.A. = Not available.
Source: Japan Automobile Dealers Association

Motor Vehicle Production

Car production in Japan showed a year-on-year gain of 6.1% in 1997, totaling 10.97 million units. Despite a downturn in domestic sales, overall production scored a second consecutive year of growth, benefiting from a favorable trend in overall exports prompted in part by the strong performance of the world's major markets excepting Asia, where demand plunged due to the currency crisis, and in part by the depreciation of the yen throughout the year.

Passenger car production posted a year-on-year rise of 8% for the second straight year to reach 8.49 million units. Standard cars and small cars recorded gains of 17.8% and 4.7% respectively, while minicars,
which are largely aimed at the domestic market, dropped 4.2\%.
Truck production registered a marginal decline of 0.3%, totaling 2.42 million units, to remain essentially unchanged. Production of standard trucks jumped 19.6% against declines of 12.7% and 6.7% in small truck and minitruck sectors. Production of buses rose by 17.1% to 62,234 units.

Japan maintained its rank as the world's secondlargest producer of motor vehicles following the United States. The country's total domestic output of motor vehicles accounted for about 20\% of world production for the year.

Note: Percentage figures represent the change from the preceding year.
Source: Japan Automobile Manufacturers Association.
1997 DOMESTIC PRODUCTION BY MANUFACTURER

	Cars		Trucks		Buses		Total	
	\%Chg.		\%Chg.		\%Chg.		\%Chg.	
Daihatsu	374,174	6.7	178,733	-3.3	-	-	552,947	3.2
Fuji Hvy. Ind.	334,263	5.6	95,255	-5.1	- -	-	429,518	3.0
Hino	185,703	-	67,845	-6.9	6,663	24.3	74,478	-4.8
Honda	1,185,703	24.8	120,696	-15.7	-	-	1,306,399	19.5
Isuzu	25,532	-41.2	330,710	15.9	3,458	34.8	359,700	8.6
Mazda	688,478	14.9	180,455	3.8	76	-60.4	869,009	12.3
Mitsubishi	820,703	4.9	411,436	0.2	7,443	6.8	1,239,582	3.3
Nissan	1,511,702	7.3	206,875	5.9	7,054	15.0	1,725,631	7.1
Nissan Diesel	-	-	45,883	-2.8	3,106	54.7	48,989	-0.5
Suzuki	640,778	4.0	225,552	-2.7		-	866,330	2.2
Toyota	2,910,107	4.0	557,475	-4.4	34,464	15.2	3,502,046	2.7
Other	-	-	458	18.0	-	-	458	18.0
Total	8,491,440	8.0	2,421,413	-0.3	62,234	17.1	10,975,087	6.1

Domestic Sales of New Motor Vehicles

New motor vehicle registrations dropped 5\% in 1997, amounting to only 6.72 million units and marking the first decline in domestic sales in four years. Demand in the first quarter of the year surged enormously, driven by buyers seeking to beat the increase in the consumption tax that took effect on April 1st. Throughout the rest of the year, the market remained locked in a slump due to the effects of a number of negative factors, including the backrush from the aforementioned rush-in demand, the end of a special cut in income tax, and reduced consumer confidence due to uncertainty in the overall economy. The result was a slump in demand for the year as a whole.

Passenger car sales slipped 3.8% to 4.5 million units, the first fall in four years. All sectors posted declines, with standard car sales down 2.8%, small car
sales dropping 4.0\%, and minicar sales sagging 4.2\%.
Sales of minivans, station wagons, sport-utility and other recreational vehicles remained favorable, bucking the overall downward trend. According to a survey by the Japan Automobile Dealers Association, socalled RVs accounted for over 45% of the total of do-mestically-produced cars and small trucks, the highest proportion ever. Automakers are expected to continue pursuing this trend.
Sales of trucks sank by 7.3% to drop to 2.22 million units, for the second straight year of retreat. In this area too, all sectors suffered declines, with standard trucks down 10.4%, small trucks down 7.3%, and minitrucks down 6.6\%.

New bus registrations fell 8.5\%, marking the seventh straight year of decline.

1997 DOMESTIC REGISTRATIONS BY MANUFACTURER								
	Cars	\%Chg.	Trucks	\%Chg.	Buses	\%Chg.	Total	\%Chg.
Daihatsu	275,211	-7.9	173,114	1.5	-	-	448,325	-4.5
Fuji Hvy. Ind.	204,723	-14.9	100,760	-6.6	-	-	305,483	-12.3
Hino			41,952	-5.5	2,554	-5.7	44,506	-5.5
Honda	647,037	15.1	124,771	-12.0		-	771,808	9.6
Isuzu	3,110	1.1	118,453	-10.2	1,517	-1.6	123,080	-9.9
Mazda	225,009	13.9	112,170	-18.0	-	-	337,179	0.8
Mitsubishi	344,928	-4.0	328,926	-15.4	5,028	-2.6	678,882	-9.9
Nissan	744,386	-8.5	287,550	1.7	1,802	-9.9	1,033,738	-5.9
Nissan Diesel			29,169	-5.4	856	-22.1	-30,025	-6.0
Suzuki	382,228	-3.5	213,587	-5.4	-	-	595,815	-4.2
Toyota	1,323,879	-5.7	663,427	-4.6	3,997	-14.7	1,991,303	-5.4
Imports	341,495	-13.2	23,378	-31.5	9	-69.0	364,882	-14.7
Total	4,492,006	-3.8	2,217,257	-7.3	15,763	-8.5	6,725,026	-5.0

[^0]Sources: Japan Automobile Dealers Association, Japan Automobile Importers Association.

Sales of Imported Cars in Japan

New registrations of imported cars (including commercial vehicles) dropped in 1997, marking the first decline after four years of growth, three of which were record-setting years. Sales amounted to 364,882 units, down 14.7% from the previous year. Sales of imported passenger cars tallied 341,495 units, down 13.2%.

Sales of standard imported passenger cars suffered a sharp drop of 19.3% to 224,181 units, reflecting the impact of the weak yen, the increase in the consumption tax in April, the end of the special cut in income tax, and the on-going economic slump. Sales of small imported motor vehicles, in contrast, hit 117,314 units, a rise of 1.5%.

As a result, the share of Japan's passenger car market held by imports (excluding the minicar sector as no foreign automakers market minicars in Japan) was 9.6%. (If minicars were included, the figure would be 7.6\%.)

Although sales of imports from non-Japanese automakers (pure imports as opposed to reverse imports) declined by 6.7% to 31,4281 units, sales of imported vehicles produced at Japanese automakers' foreign facilities fell to 50,601 units, a massive drop of 44.2%. This sharp decline is attributable not only to the strong demand for Japanese-brand vehicles in Western countries (especially the U nited States), which reduced the number of units to be exported to Japan from local facilities, but also to the weaker yen.

European cars continue to be the pace-setters in the imported car market, taking an overall share of 78.1%, or 266,741 units. Sales of British and Italian cars posted gains of 3.6% and 14.4%, respectively, while sales of German-, French-, and Swedish-made cars slipped by $3.8 \%, 2.3 \%$, and 19.5%, respectively. Imports of U.S.-made passenger cars amounted to 83,344 units, an overall decline of 32.0%. H owever, sales by the Big Three automakers (including sales of the Saturn) declined only 17.8%, totaling 43,579 units.

The outlook for the imported car market in 1998 is not particularly bright. Sales are expected to proceed more or less at the pace of 1997, with no return to the high levels of recent years expected for the time being.

BEST-SELLING FOREIGN MAKES (1997)

	Volkswagen	49,340 units
Mercedes Benz	41,905	
3	BMW	36,489
4	Opel	34,397
5	Honda	29,968
6	Rover	27,508
7	Volvo	19,875
GM	19,692	
9	Chrysler	14,432
Ford	13,983	

Note: GM includes the GM-made Toyota Cavalier, Ford includes Ford Europe, BMW includes units manufactured in the U.S., and Volvo includes units manufactured in the Netherlands.

NEW REGISTRATIONS OF IMPORTED CARS
thousands of units
4.0
3.5
3.0

Note: Percentage figures represent the change from the preceding year.
Source: Japan Automobile Importers Association.

Car Market Sectors

In Japan, engine size is the main criterion for dividing passenger cars into categories. Engine displacement for standard cars is 2000cc or more, for small cars 661-2000cc, and for minicars 660cc and under.

O ne key characteristic of the Japanese car market is the high proportion represented by the small and minicar sectors, that is, cars with engine displacement under 2000cc. In 1997, these sectors accounted for an overwhelming portion of the market, with small cars holding a 60.1% share and minicars holding 20.4%, for a combined total of 80.6%. Meanwhile, the share taken by standard cars has remained flat at around 20% for the past three years.

A second characteristic of the market is standard cars' high share of the imported car market in contrast to their low share of the total market. The share of the imported car market taken by standard cars has been $71.1 \%, 70.6 \%$, and 65.6%, respectively, over the past three years.

Minicars, which were first introduced into the Japanese market in 1955, have proven to be well-suited to

Japan's narrow roads and tight parking conditions. In addition, engines with displacement of 660cc offer attractive fuel economy and receive preferential tax treatment. Regulations on the overall length and width of minicars are scheduled to be broadened in 1998 in order to improve the safety of the category.

A third characteristic is the increasing presence of RV models in the car market. Recreational-type vehicles such as minivans, station wagons and "sportutilities" topped the 45% level in 1997 sales (excluding import models), and this growth trend is expected to continue.

A breakdown of the car market by fuel type reveals that as of December 1996, cars with gasoline-powered engines numbered 41,509,579 units, accounting for 88.6% of cars on the road. Diesel-powered cars numbered $5,072,757$ units, accounting for 10.8% of cars on the road. Cars powered by LPG or other means numbered 286,376 units, accounting for only 0.6% of cars on the road.

1997 CAR MARKET SHARE BY CATEGORY

1997 IMPORTED CAR MARKET SHARE BY CATEGORY

| PASSENGER CAR SALES IN JAPAN BY MARKET SECTOR | | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | 1980 | 1985 | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 |
| SMALL CARS | $2,608,215$ | $2,869,527$ | $3,839,221$ | $3,364,285$ | $2,966,003$ | $2,743,336$ | $2,712,682$ | $2,654,291$ | $2,813,362$ | $2,701,686$ |
| Growth rate | -6.2% | 1.8% | 2.8% | -12.4% | -22.7% | -7.5% | -1.1% | -2.2% | 6.0% | -4.0% |
| Market share | 91.4% | 92.4% | 75.2% | 69.1% | 66.6% | 65.3% | 64.4% | 59.7% | 60.3% | 60.1% |
| STANDARD CARS | 71,931 | 73,539 | 467,490 | 663,611 | 713,828 | 683,750 | 687,463 | 889,260 | 897,985 | 873,220 |
| Growth rate | -15.1% | -10.4% | 69.1% | 42.0% | 7.6% | -4.3% | 0.5% | 29.4% | 1.0% | -2.8% |
| Market share | 2.5% | 2.4% | 9.2% | 13.6% | 16.0% | 16.3% | 16.3% | 20.0% | 19.2% | 19.4% |
| MINICARS | 174,030 | 161,017 | 795,948 | 840,337 | 774,181 | 772,365 | 810,023 | 900,355 | 957,381 | 917,100 |
| Growth rate | 2.2% | -16.8% | 102.8% | 5.6% | -7.9% | -0.2% | 4.9% | 11.2% | 6.3% | -4.2% |
| Market share | 6.1% | 5.2% | 15.6% | 17.3% | 17.4% | 18.4% | 19.3% | 20.3% | 20.5% | 20.4% |
| TOTAL MARKET | $2,854,176$ | $3,104,083$ | $5,102,659$ | $4,868,233$ | $4,454,012$ | $4,199,451$ | $4,210,168$ | $4,443,906$ | $4,668,728$ | $4,492,006$ |
| Growth rate | -6.0% | 3.3% | 15.9% | -4.6% | -8.5% | -5.7% | 0.3% | 5.6% | 5.1% | -3.8% |

Note: Figures include imports.
Source: Japan Automobile Manufacturers Association.

Motor Vehicle Exports

Following a long downtrend, motor vehicle exports in 1997 jumped by 22.7% to $4,553,168$ units, marking their first year-on-year growth in seven years.

This growth is attributable to a number of factors, including an economic recovery or the continuation of favorable economic conditions in Europe, North America, and other export destinations, as well as the increased demand for sport-utility vehicles and other models that are not produced by Japanese automakers in overseas plants.

A closer look by destination reveals that exports to Asia declined by 2.2\%. In contrast, exports to Europe
and North America, which account for the bulk of motor vehicle exports, surged by 32.2% and 20.8%, respectively. Other destinations likewise recorded double-digit growth. Although the U nited States remained Japan's leading export destination, its share of total motor vehicle exports decreased in the year to 28%.

Exports as a proportion of total domestic production increased by 5.6 points to 41.0%. Nonetheless, Japanese automakers continue to press ahead to make steady progress in their globalization efforts. Overseas production in 1997 amounted to 6,342,170 units.

EXPORTS BY DESTINATION									
	1965	1970	1975	1980	1985	1990	1995	1996	1997
Asia	56,879	149,787	290,134	581,116	710,573	569,143	616,027	620,016	606,389
Middle East	8,400	26,635	241,511	542,955	401,598	284,194	206,446	284,881	346,154
Europe (EU)	$\begin{aligned} & 16,458 \\ & (1,425) \end{aligned}$	$\begin{aligned} & 126,275 \\ & (51,514) \end{aligned}$	$\begin{array}{r} 528,486 \\ (383,589) \end{array}$	$\begin{aligned} & 1,226,954 \\ & (955,974) \end{aligned}$	$\begin{aligned} & 1,363,694 \\ & (972,959) \end{aligned}$	$\begin{array}{r} 1,750,497 \\ (1,256,328) \end{array}$	$\begin{array}{r} 918,831 \\ (792,058) \end{array}$	$\begin{array}{r} 948,712 \\ (801,858) \end{array}$	$\begin{array}{r} 1,254,879 \\ (1,025,688) \end{array}$
North America (U.S.A.)	$\begin{array}{r} 40,404 \\ (34,441) \end{array}$	$\begin{array}{r} 495,608 \\ (422,464) \end{array}$	$\begin{aligned} & 1,003,954 \\ & (919,949) \end{aligned}$	$\begin{array}{r} 2,592,577 \\ (2,407,645) \end{array}$	$\begin{array}{r} 3,384,563 \\ (3,131,998) \end{array}$	$\begin{array}{r} 2,521,823 \\ (2,236,988) \end{array}$	$\begin{array}{r} 1,301,218 \\ (1,228,096) \end{array}$	$\begin{array}{r} 1,169,073 \\ (1,098,504) \end{array}$	$\begin{array}{r} 1,412,055 \\ (1,272,093) \end{array}$
Latin America	14,117	79,678	143,509	382,231	290,417	216,375	329,064	279,641	437,848
Africa	21,595	111,244	217,294	322,329	137,729	129,293	137,718	134,027	174,325
Oceania	36,176	97,316	251,426	316,865	426,075	344,236	274,828	265,478	310,778
Other	139	233	1,298	1,934	15,809	15,994	6,676	9,626	10,776
Total	194,168	1,086,776	2,677,612	5,966,961	6,730,458	5,831,555	3,790,809	3,711,454	4,553,204

MOTOR VEHICLE EXPORTS

millions of units								
7	-----	---					- - - -	
6	- - - - -	--						
5								
4								-Tota
3								
2								
1							cks, \& Bu	
1970	'80	'85	'91	'92	'93	'95	'96	'97
Year	Cars		Trucks		Buse		Total	
		\%Chg.		\%Chg.		\%Chg.		\%Chg.
1997	3,578,699	+25.1	919,903	+13.9	54,602	+24.5	4,553,204	+22.7
1996	2,860,080	-1.2	807,508	-5.0	43,866	-2.0	3,711,454	-2.1
1995	2,896,216	-13.8	849,859	-17.2	44,734	-39.2	3,790,809	-15.0
1994	3,359,814	-14.1	1,026,878	-0.7	73,600	-0.6	4,460,292	-11.1
1993	3,910,584	-11.3	1,033,063	-12.7	74,009	-1.4	5,017,656	-11.5
1992	4,408,864	-1.0	1,183,686	-5.1	75,096	39.4	5,667,646	-1.5
1991	4,452,233	-0.7	1,247,263	-4.7	53,883	34.8	5,753,379	-1.3
1990	4,482,130	1.8	1,309,121	-9.4	39,961	13.7	5,831,212	-0.9
1985	4,426,762	11.2	2,238,104	8.0	65,606	16.7	6,730,472	10.2
1980	3,947,160	27.2	1,953,685	37.2	66,116	79.4	5,966,961	30.8
1975	1,827,286	5.8	833,672	-4.7	16,654	4.3	2,677,612	2.3
1970	725,586	29.5	351,611	20.9	9,579	41.6	1,086,776	26.7
1965	100,716	50.4	90,923	11.3	2,529	45.8	194,168	29.1
1960	7,013	43.6	31,028	122.3	768	73.8	38,809	24.6
1955	2	100.0	907	33.6	322	4.5	1,231	24.6
1950	7	-	5,409	-	93	-	5,509	-

Note: Percentage figures represent the change from the preceding year.
Source: Japan Automobile Manufacturers Association.

Motor Vehicles In Use and Cars Per Capita

The number of vehicles in use on Japanese roads is rising. As of December 1997, the number of vehicles in use had increased by 1.7% over the previous year to reach a total of 70,003,297 units. O ver the past ten years, the number of vehicles in use has grown substantially, at a pace of around 2 million units per year. In 1997, however, that pace slowed down to approximately 1.2 million units.

From a worldwide perspective, the U nited States retains an overwhelming lead in terms of the number of vehicles in use, which in the U.S. total approximately 203 million units and account for about one out of every three motor vehicles in the world.

Japan ranks second in motorization, holding a

PASSENGER CARS' AVERAGE SERVICE LIFE (as of March of each year)

Year	Life in Years
1975	6.72
1980	8.29
1985	9.17
1990	9.26
1995	9.43
1996	9.27
1997	9.28

Source: Japan Automobile Inspection and Registration Association.
share of about one-tenth of the estimated world total of nearly 700 million units.

The average age of carson Japanese roads is also rising. As of March 1997, the average age had lengthened to a record-setting 5.14 years, up 0.1%. The average service life, from purchase to scrapping, increased by 0.1 point to 9.28 years.
Japan ranks lower than the U nited States or Europe in terms of passenger cars per capita. According to 1996 statistics, Japan had only 386 cars per thousand persons, or one car for every 2.6 persons.

MOTOR VEHICLES IN USE (as of the end of each year)

Note: Percentage figures represent the change from the preceding year.
Source: Ministry of Transport.

Motorcycle Production and Domestic Sales

Domestic demand for motorcycles declined for the first time in three years, resulting in total sales of 1.19 million units, a year-on-year drop of 2.6%.

Most categories experienced declines. In contrast to the modest decline of 1.4% posted by the marketdominating 50cc \& under category, total figures for larger motorcyclesfell by 5.7\%. The 51-125cc category plunged by 8.7% and the 251 cc \& over category dropped 6.2%, while the $126-250$ cc category displayed a modest gain of 1.0%.

Nevertheless, total motorcycle production in 1997 registered a year-on-year rise of 3.5% to 2.68 million
units. Production of the 50cc \& under category slipped 1.5%, reflecting the limp domestic demand, and the $51-125 \mathrm{cc}$ category similarly declined by 1.3%. In sharp contrast, the 126-250cc and over 250cc categories posted record-setting double-digit gains, up 15.9% and 13.8%, respectively.

The number of motorcycles on the road in Japan has been on a downtrend for over ten years, standing as of the end of March 1997 at 14.89 million units, or about 12% of the worldwide total. This is third place on the global scale, following India and China.

[^1]Source: Japan Automobile Manufacturers Association.

Motorcycle Exports

Exports of motorcycles amounted to $1,459,708$ units in 1997, surpassing the previous year's total by approximately 100,000 units to post a year-on-year gain of 7.5%. This marked the second year of growth in exports, following an increase of 2.4% in 1996.

Due to the recent currency crisis in Asia and the subsequent economic turmoil, shipments to that region slipped sharply, dropping 22.3%, while shipments to Europe continued to soar, rising 24.1\%. As a result, Europe retained its position as Japan's larg-
est motorcycle export market for the second straight year, edging out Asia which had previously held the top spot. At the same time, shipments to the Middle East, Central and South America, and Oceania registered double-digit growth, while shipments to Africa and the United States remained flat.

Exports rose in all but one category. The 50cc \& under category, the $126-250 \mathrm{cc}$, and the over 250 cc categories grew $37.3 \%, 22.0 \%$, and 13.4%, respectively. Meanwhile, the 51-125cc category fell 2.5%.

EXPORTS BY DESTINATION									
	1985	1990	1991	1992	1993	1994	1995	1996	1997
Asia	936,990	250,846	299,743	460,619	643,505	504,082	464,979	420,903	326,985
Middle East	178,395	41,766	113,205	78,099	29,512	25,473	16,131	26,489	46,417
Europe (EU)	$\begin{array}{r} 415,830 \\ (351,831) \end{array}$	$\begin{array}{r} 527,040 \\ (448,923) \end{array}$	$\begin{array}{r} 563,130 \\ (492,699) \end{array}$	$\begin{array}{r} 535,761 \\ (500,021) \end{array}$	$\begin{array}{r} 484,742 \\ (457,932) \end{array}$	$\begin{array}{r} 355,761 \\ (335,526) \end{array}$	$\begin{array}{r} 340,585 \\ (322,957) \end{array}$	$\begin{array}{r} 440,674 \\ (415,803) \end{array}$	$\begin{array}{r} 546,882 \\ (514,161) \end{array}$
North America (U.S.A.)	$\begin{array}{r} 800,386 \\ (735,683) \end{array}$	$\begin{array}{r} 182,933 \\ (167,202) \end{array}$	$\begin{array}{r} 214,347 \\ (202,340) \end{array}$	$\begin{array}{r} 270,412 \\ (255,358) \end{array}$	$\begin{array}{r} 268,620 \\ (253,732) \end{array}$	$\begin{array}{r} 244,666 \\ (229,330) \end{array}$	$\begin{array}{r} 267,831 \\ (251,880) \end{array}$	$\begin{array}{r} 246,259 \\ (227,022) \end{array}$	$\begin{array}{r} 244,622 \\ (227,461) \end{array}$
Latin America	60,578	92,001	128,817	241,528	223,677	219,985	178,175	157,535	218,131
Africa	63,996	52,721	55,230	51,466	36,924	25,027	26,329	34,398	34,929
Oceania	85,307	36,437	36,330	30,752	32,730	32,862	31,680	31,077	41,742
Total	2,541,482	1,183,744	1,410,802	1,668,637	1,719,710	1,407,856	1,325,710	1,357,3350	1,459,708

MOTORCYCLE EXPORTS

Year	50cc \& under	Over 50cc			Subtotal	Total	
		51~125cc	126~250cc	Over 250cc			\%Chg.
1997	75,513	649,825	187,981	546,389	1,384,195	1,459,708	7.5
1996	55,016	666,593	154,103	481,623	1,302,319	1,357,335	2.4
1995	61,627	691,433	129,961	442,689	1,264,083	1,325,710	-5.8
1994	88,002	741,486	132,850	445,518	1,319,854	1,407,856	-18.1
1993	138,690	925,447	136,325	519,248	1,581,020	1,719,710	3.1
1992	188,885	788,404	153,631	537,717	1,479,752	1,668,637	18.3
1991	155,461	603,471	134,915	516,955	1,255,341	1,410,802	19.2
1990	147,301	507,840	117,222	411,381	1,036,443	1,183,744	7.3
1985	369,167	1,350,412	296,865	525,038	2,172,315	2,541,482	19.7
1980	501,027	1,907,481	548,306	972,226	3,428,013	3,929,040	44.0
1975	288,974	1,546,170	328,313	527,344	2,401,827	2,690,801	-17.0
1970	326,815	914,325	187,185	309,277	1,410,787	1,737,602	33.8

[^2]Source: Japan Automobile Manufacturers Association.

North American Manufacturing Operations

In 1982 Japanese automakers commenced production in the U nited States, led by H onda, and sixteen years later there are seven Japanese automakers with an established presence in the American market. This is in line with the automakers' global strategies for supplying local demand with locally-built vehicles. Collectively, they now have seven U.S. manufacturing operations, in which they have invested a total of $\$ 14.0$ billion in infrastructure and equipment. Taken together, these installations constitute the Japanese industry's largest offshore presence in a single country. In Canada, the automakers are operating three production plants, including one joint venture with GM. There is al so a separate plant which produces aluminum wheels.

The implementation of new global business plans that Japanese automakers announced in June 1995 has resulted in additional investment. For example: Toyota has constructed a fourth North American plant in Indiana; Nissan finalized plansto build an engine and transmission assembly plant in Tennessee; and in December 1996, H onda installed a second production line at its plant in Ontario, Canada. Toyota's new engine plant in West Virginia is slated to go into service from autumn 1998.

Although Japanese automakers boosted their investment in production facilities during 1997, total production at Japanese automakers' American manufacturing plants declined by 1% to $1,924,794$ units as production shifted to an emphasis on sport-utility vehicles. At the same time, Japa-nese-affiliated manufacturers increased their production supplied to the U.S. Big Three automakers by 2.4%, with the total rising to 139,579 units.

The operations of Japanese automakers not only provide significant local employment opportunities, but also contribute to the growing export of vehicles from the U.S. It comes thus as no surprise that H onda was the U.S.'s largest exporter of passenger cars in 1997 (excluding vehicles exported to Canada). Japanese-badged car exports accounted for about 60\% of total U.S. car exports in 1997. N evertheless, sales of American-made, Japanese-badged imports into Japan declined 44.2\% during 1997 (see page 6).

Japanese automakers are further expanding their local procurement of parts and materials in keeping with their localization drive. This is why they are collaborating tightly
with the American and Canadian auto parts industries. At the same time, their technological assistance and other cooperative initiatives are paving the way to greater cost-effectiveness and higher productivity and quality levels among local suppliers. In addition, N orth American parts makers are enjoying more business opportunities due to the increased local production of major components such as engines and transmissions, which further boosts local content.

Local R\&D is also being reinforced through the process known as "design-in" development, in which suppliers get involved from the early stages of vehicle development. This process enables more local vehicle development and facilitates closer collaboration with local suppliers. The nine U.S. R\&D subsidiaries of Japanese automakers currently maintain 29 U.S. R\&D centers, which provide jobs to over 3,500 Americans in total.

Japanese automakers' purchases of American-made parts are also growing as a result of their localization drive and rising local production levels. The collective total of U.S. parts purchases by Japanese automakers, which was $\$ 2.5$ billion in fiscal 1986, reached $\$ 22.7$ billion in fiscal 1996 (April 1, 1996-M arch 31, 1997).

Complementing such company-to-company initiatives, JAMA pursues a wide range of constructive approaches intended to underpin mutual cooperation and awareness and facilitate local components manufacturing and procurement. JAMA cooperates routinely with American trade organizations such as the Motor and Equipment M anufacturers Association (MEMA) and with the U.S. Department of Commerce and other government agencies. One recent example was the joint hosting of a business conference in San Francisco in February 1997 by JAMA and MEMA.

Japanese automakers are also active in cooperative initiatives at the industry level. H ere JAMA has long played a leading role in the encouragement of international cooperation and exchange. Through periodic meetings of the JAM A-AAMA Joint Cooperation Committee, for example, both JAMA and the American Automobile M anufacturers Association seek to further develop specific measures in the areas of standards and certification harmonization and environmental protection. The JAMA-AAMA Joint Cooperation Committee has already met three times.

JAPANESE AUTOMAKERS' NORTH AMERICAN R\&D CENTERS

Name of Company	Headquarters,Division Offices	Current Employees	Current (Planned) Functions
Honda R\&D North America, Inc.	Torrance, CA, Raymond \& East Liberty, OH, Denver, CO, Mojave Desert, CA	850	1,2,3,4,5,6,7
Isuzu Motors America, Inc.	Los Angeles, CA, Detroit, MI	192	1,2,3
Mazda North American Operations, Inc.	Irvine, CA, Flat Rock, MI, Ann Arbor, MI	1,344	1,2,3,4,(5),(6),7
Mitsubishi Motors R\&D of America, Inc.	Bloomington-Normal, IL, Ann Arbor, MI, Cypress, CA Bridgeport, NJ, Washington, D.C., New York, N. Y.	117	1,2,3,4,5,6,7
Nissan Design International, Inc.	San Diego, CA	50	4
Nissan R\&D, Inc.	Farmington Hills, MI, Ann Arbor, MI, Los Angeles, CA, Stanfield, AZ Boston, MA, Smyrna, TN	500	1,2,3,5,6,7
Subaru R\&D, Inc.	Garden Grove, CA	40	1,3,4,6
Toyota Technical Center U.S.A, Inc.	Ann Arbor, MI (with offices in California and Arizona)	458	1,2,3
Calty Design Research, Inc. (Toyota)	Newport Beach, CA	50	4

Key to Functions

1) Technical support for procurement of parts for local production
2) Evaluation of parts
3) Evaluation of vehicles
4) Styling \& general design
5) Parts design
6) Vehicle design
7) Prototype production

JAPANESE AUTOMAKERS' NORTH AMERICAN MANUFACTURING OPERATIONS

United States

Name of Company	Location (Status)	Products	Start-Up	Employees	Total Investment (million)
Honda of America Manufacturing, Inc.	Marysville,East Liberty,Anna, Ohio (Sole Entry)	Accord, Civic, Acura CL, Engines, Steering Components	Nov. 1982	11,500	\$3,229
Nissan Motor Mfg. Corporation USA	Smyrna, Tennessee (Sole Entry)	Altima, Sentra, Pickup Truck Engines \& Axles	June 1983	6,000	\$1,430
AutoAlliance International, Inc. (Mazda)	Flat Rock, Michigan (Joint Venture: Ford)	Mazda: 626	Sept. 1987	3,100	\$1,000
Mitsubishi Motor Manufacturing of America, Inc.	Bloomington-Normal, Illinois (Sole Entry)	Mitsubishi: Eclipse, Galant Chrysler: Avenger, Sebring	Sept. 1988	3,900	\$1,040
New United Motor Mfg., Inc. (Toyota)	Fremont, California (Joint Venture: General Motors)	Toyota: Corolla \& Tacoma GM: Geo Prizm	Dec. 1984	4,800	\$930
Toyota Motor Mfg. Kentucky, Inc.	Georgetown, Kentucky (Sole Entry)	Camry, Avalon, Sienna, Engines	May 1988	7,700	\$4,500
Subaru-Isuzu Automotive, Inc.	Lafayette, Indiana (Joint Venture)	Fuji: Legacy Isuzu: Rodeo Amigo \& Honda Passport	Sept. 1989	3,060	\$760

Canada

Honda Canada Inc.	Alliston, Ontario (Sole Entry)	Civic, Acura EL	Nov. 1986	1,700	C $\$ 800$
Toyota Motor Mfg., Canada Inc.	Cambridge, Ontario (Sole Entry)	Corolla	Nov. 1988	2,300	$C \$ 1,800$
CAMI Automotive Inc. (Suzuki)	Ingersoll, Ontario (Joint Venture: GM Canada)	Cultus, Escudo	April 1989	2,500	C $\$ 615$

PRODUCTION AT U.S. MANUFACTURING OPERATIONS

Note: *Figures include units produced for Big Three automakers (NUMMI/GM, AutoAlliance/Ford, Mitsubishi Motor Mfg. of America/Chrysler). Source: Ward's Automotive Reports.

European Manufacturing Operations

Japanese automakers currently run affiliated plants at six locations in continental Europe-in Spain, the Netherlands, Portugal, and Hungary- where their presence is growing significantly, as well as at four locations in the U.K. Their plants in Europe al ready provide jobs for a total of 27,700 Europeans. This figure will increase, as Toyota, for example, announced in December 1997 that it will soon launch production in northern France.

Contributing to the separate, distinct character of their European operations, Japanese automakers now maintain nine R\&D and technical centers in Europe, providing jobs for about 1,000 European technical personnel and other workers. The main objective of these facilities is to facilitate steady increases in local content levels. H owever, they al so provide support for market research, product planning, and technical assistance and exchange.

European R\&D centers perform crucial tasks such as evaluating potential local suppliers and providing technological assistance to those suppliers selected, as well as overseeing compliance with local regulations. As a direct result of their efforts, about 200 European suppliers are al ready supplying parts to Nissan U.K. Consequently, the local content of Europe-made Nissan models has already reached over 80\%. Other automakers are poised to attain similar levels, with Toyota being supplied by about 160 local firms and H onda by about 250.

Japanese automakers al so cooperate energetically at the industry level to reinforce local parts manufacturing and procurement in Europe.
JAMA has been collaborating with the Comité de Liaison de la Construction d'Équipments et de Pièces d'Automobiles (CLEPA) since March 1995, when the first jointJAMA-CLEPA conference was held in Paris. Featuring the participation of representatives of European suppliers and Japanese automakers, it staged the first comprehensive series of meetings to explore
joint business opportunities. Following the success of that first conference, a second conference was held in Berlin on a larger scale in M ay 1996. The third JAMACLEPA conference was held in London in November 1997, and a fourth is slated for April 1999 in Amsterdam.

Another example of Japanese-European cooperation was the O ctober 1996 business conference cosponsored by motorcycle producers that are members of JAMA and their counterparts in Europe, the Association des Constructeurs Européens de M otocycles (ACEM). This conference promoted broader opportunities for Japanese motorcycle manufacturers to do business with European suppliers.

As a means to provide support to strengthen the fundamentals of the U.K.'s automotive parts industry, JAMA cooperates with the Industry Forum, a project initiated by the U.K.'sDepartment of Trade and Industry and the Society of Motor Manufacturers and Traders (SMMT) to formulate a M aster Engineer program. Under this program, the three Japanese automakers that manufacture in the U.K.-Toyota, Nissan, and H onda- will send outstanding engineers to Britain. The engineers will provide on-site kaizen training for a period of two years, aiming to nurture master engineers at the U.K. suppliers, in an effort to enhance the competitiveness of the British auto parts industry.

Production by Toyota, Nissan, and H onda in the U.K. hit 484,378 units in 1997, a gain of 6.6%. H olding a 25.0% share of total U.K. auto production, Japanese automakers are helping greatly to raise the competitiveness of the British auto industry as a whole.

O ne significant feature of Japanese automakers' local production in Europe is their high proportion of exports. Nissan commenced exports from the U.K. in 1988 with exports of 1,080 units. By 1997, this figure had risen to 206,639 units, accounting for 76% of Nissan's U.K. production.

JAPANESE AUTOMAKERS' EUROPEAN R\&D CENTERS

Name of Company	Headquarters, Division Offices	Current Employees	Current Functions
Honda R\&D Europe G.m.b.H.	Offenbach, Germany, Swindon, U.K.	130	1,2,3,4,6,7
Mazda Europe R\&D Representative Office	Oberursel, Germany	100	3,4,6,7
Mitsubishi Motors R\&D Europe G.m.b.H.	Trebur, Germany	73	1,3,4,6
Nissan Design Europe G.m.b.H	Geretsried, Germany	10	4
Nissan European Technology Centre (Brussels) Ltd.	Brussels, Belgium	60	2,3
Nissan European Technology Centre Ltd.	Cranfield, U.K.	360	1,2,3,4,5,6,7
Nissan European Technology Centre España, S.A.	Barcelona, Spain	200	1,2,3,4,5,6,7
N.V. Toyota Motor Europe Marketing \& Engineering S.A. (Technical Div./Design Div.)	Zaventem, Brabant, Belgium	60 in Technical Div. and Design Div.	2,3,4

Key to Functions

1) Technical support for procurement of parts for local production
2) Evaluation of parts 3) Evaluation of vehicles 4) Styling \& general design 5) Parts design 6) Vehicle design 7) Prototype production

JAPANESE AUTOMAKERS' EUROPEAN MANUFACTURING OPERATIONS

United Kingdom

$\left.\begin{array}{|c|c|c|c|c|c|}\hline \text { Name of Company } & \begin{array}{c}\text { Location } \\ \text { (Status) }\end{array} & \text { Products } & \text { Start-Up } & \begin{array}{c}\text { Total } \\ \text { Employees }\end{array} & \begin{array}{c}\text { Investment } \\ \text { (million) }\end{array} \\ \hline \text { Nissan Motor Mfg. (U.K.) } \\ \text { Limited }\end{array} \quad \begin{array}{c}\text { Sunderland } \\ \text { (Sole Entry) }\end{array}\right)$

Spain

Santana-Motor, S.A. (Suzuki)	Madrid (Technical Support)	Jimny, Escudo	March 1985	1,900	N.A.
Nissan Motor Ibé rica, S.A.	Barcelona (Capital Participation)	Patro, Terrano II, Vannette, Serena, Trade, Trucks, Parts, Engines \& Transmissions	Jan. 1983	4,500	N.A.

Portugal

Salvador Caetano I.M.V.T., S.A. (Toyota)	Ovar (Joint Venture: Salvador Caetano)	Dyna, Hiace, Optimo	Nov. 1968	2,000	N.A.
Mitsubishi Trucks Europe-Sociedade Europeia de Automoveis, S.A.	Tramagal	Canter	March 1996	375	N.A.

The Netherlands

Netherlands Car B.V. (Mitsubishi)	Born, Linburg (Joint Venture)	Mitsubishi: Carisma Volvo: S40, V40	May 1995	6,400	N.A.
Hungary					
Magyar Suzuki Corporation	Esztergom (Joint Venture)	Cultus, Subaru Justy	Oct. 1992	1,400	N.A.

EUROPEAN PRODUCTION BY JAPANESE AUTOMAKERS

thousands of units 1,00																											
800																											
600																											
400																											
200																											
0		1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997													
U.K.	Honda	-	-	6,658	5,044	3,630	26,454	35,952	33,445	50,545	51,531	93,283	105,810	108,097													
	Nissan	-	-	-	56,541	77,282	76,190	124,666	179,009	246,281	204,944	215,346	231,627	271,666													
	Toyota	-	-	-	-	-	-	-	-	37,314	85,467	88,440	116,973	104,615													
	Subtotal	-	-	6,658	61,585	80,912	102,644	160,618	212,454	334,140	341,942	397,069	454,410	484,378													
Germany	*Toyota	-	-	-	-	-	4,105	6,019	6,780	4,854	3,009	3,509	3,994	524													
Spain	Nissan	27,557	46,419	53,525	26,888	85,879	79,662	70,992	76,676	82,036	101,172	117,324	107,332	101,780													
	Suzuki	9,238	17,514	23,158	22,362	18,383	21,203	25,505	32,511	30,476	14,668	25,843	29,726	32,133													
	Subtotal	36,795	63,933	76,683	49,250	104,262	100,865	96,497	109,187	112,512	115,840	143,167	137,058	133,913													
Portugal	Toyota	4,542	7,694	12,706	13,684	12,545	10,528	12,033	13,801	10,888	8,808	6,251	5,475	6,364													
	Mitsubishi	1,838	2,276	4,747	5,807	5,496	5,022	7,111	9,074	8,577	6,920	7,176	5,562	7,265													
	Isuzu	-	-	-	-	-	-	-	-	1,773	1,209	1,031	0	0													
	Subtotal	6,380	9,970	17,453	19,491	18,041	15,550	19,144	22,875	21,238	16,937	14,458	11,037	13,629													
Netherlands	Mitsubishi	-	-	-	-	-	-	-	-	-	-	20,879	44,491	81,698													
Hungary	Suzuki	-	-	-	-	-	-	-	996	13,151	19,412	36,473	51,778	63,540													
	Total	43,175	73,903	100,794	130,326	203,215	223,164	282,278	352,292	485,895	497,140	615,555	702,768	777,682													

[^3]
Asian Manufacturing Operations

More than ten years have passed since Japanese automakers moved beyond simply supplying KD (knock-down) kits for local assembly, which com-
menced in the 1960s, and began to be actively involved in contributing to the growth of an Asian motor vehicle industry. Local production in Asia has steadily

JAPANESE AUTOMAKERS' ASIAN MANUFACTURING OPERATIONS

	Daihatsu	Fuji Hvy. Ind.	Hino	Honda	Isuzu	Mazda	Mitsubishi	Nissan	Nissan Diesel	Suzuki	Toyota
Bangladesh			CVs		CVs		CVs				CVs
China	Cars \& CVs	Cars	CVs		CVs	Cars \& CVs	CVs	CVs	CVs	Cars \& CVs	CVs
India				Cars		CVs	CVs			Cars \& CVs	
Indonesia	Cars \& CVs		CVs	Cars	CVs	Cars \& CVs	Cars \& CVs	Cars \& CVs	CVs	Cars \& CVs	Cars \& CVs
Malaysia	Cars \& CVs	CVs	CVs	Cars	CVs	Cars \& CVs	Cars \& CVs	Cars \& CVs		Cars \& CVs	Cars \& CVs
Myanmar											
Pakistan			CVs	Cars	CVs	CVs		Cars	CVs	Cars \& CVs	Cars \& CVs
Philippines	Cars \& CVs		CVs	Cars	CVs	Cars \& CVs	Cars \& CVs	Cars \& CVs	CVs	Cars \& CVs	Cars \& CVs
S. Korea	CVs					Cars \& CVs	Cars \& CVs			Cars \& CVs	
Taiwan		Cars \& CVs	CVs	Cars	CVs	Cars \& CVs	Cars \& CVs	Cars \& CVs		Cars \& CVs	Cars \& CVs
Thailand	Cars \& CVs		CVs	Cars	CVs	Cars \& CVs	Cars \& CVs	Cars \& CVs	CVs	Cars \& CVs	Cars \& CVs
Vietnam	CVs	Cars	CVs		CVs	Cars \& CVs	Cars \& CVs			CVs	Cars \& CVs
Turkey			CVs	Cars	CVs		CVs				Cars

Notes: Includes assembly operations.
$C V s=$ Commercial vehicles
expanded since then, guided by a new concept centered on meeting the needs of rapidly emerging middle-income families by locally producing cars to specifically satisfy local requirements.

At the same time that Japanese automakers are accelerating the pace of their localization drive in Asia, they are making comprehensive efforts to contribute to regional economies. They have invested millions of dollars and provided jobs for around 50,000 local personnel in sales and production. In addition, they are transferring technological expertise through joint ventures, technical agreements and the training of local personnel, and providing crucial support for peripheral industries such as metals and electronics.
Japanese automakers have also been increasing the number of model lines made in Asia and parts exports from Asia in an effort to offset the slump in internal demand that Asia has experienced since the onset of the Asian financial crisis in mid-1997. Through such efforts, Thailand, for example, became a net exporter of finished vehicles in 1997.
Japanese automakers have been enthusiastic supporters of the BBC (Brand-to-Brand Complementation) program launched by ASEAN. Under this program, the flow of auto components between member nationsis unrestricted. This allows economies of scale to cover the region as a whole. For example, Toyota's
production of vehicles for ASEAN' s domestic markets efficiently concentrates the production of steering gears in Malaysia, gasoline engines in Indonesia, transmissions in the Philippines, and diesel engines in Thailand.

The scheme succeeding BBC, known as AICO (ASEAN Industrial Cooperation), has also won the wholehearted endorsement of Japanese automakers. Like the BBC program, the AICO scheme is designed to facilitate cooperative industrial production in the region, but AICO covers a much broader range of manufacturing than BBC, which was limited to automobiles.

In March 1997, JAMA was co-sponsor of an important conference in Bangkok that had the objective of reinforcing the ties between the Japanese auto industry and its counterparts in ASEAN. The procurement policies of Japanese automakers, the development of ASEAN's automotive supporting industries and similar topics were examined in conferences and seminars. A delegation from the Japan External Trade Organization (JETRO) presented a new database designed to better match Japanese buyers with Asian suppliers. The conference is expected to lead to increases in both the capacity and capabilities of local production in ASEAN.

International Automotive Industry Ties

Japanese auto manufacturers are forging cooperative ties on a worldwide scale as they increasingly globalize their business operations and seek to use business resources more efficiently.

As the market matures, demand for cars is changing and diversifying. At the same time, costs for the development of new models is rising as automakers attempt to accommodate the changes in demand. To
cut development costs and launch modelsquickly into waiting markets, automakers are engaging in a wide range of strategic alliances, including capital and technological tie-ups, joint and subcontracted development, joint and subcontracted production, supplemental sales networks, and the supply of finished vehicles (see pages 18 \& 19).

International Automotive Industry Ties

Notes: 1. This chart illustrates the Japanese automobile industry's main automaker-to-automaker ties in the United States, Europe, and Asia. Even more complex ties exist among other world automakers, and the trend to such complex interrelationships is growing in step with the advance of globalization.
2. GM Europe includes the subsidiaries Opel (Germany) and Vauxhall (U.K.). Ford Europe includes subsidiaries such as Ford of Britain, Ford of Germany, and so on.

Sources: Materials supplied by Japanese automakers and information extracted from industry magazines throughout the world.

Motor Vehicle Classification

Japan classifies motor vehicles in various categories according to the provisions of two basic laws: the Road Vehicles Act and the Road Traffic Act.
The Road Vehicles Act divides passenger cars into three categories and motorcycles into four categories, based on the vehicle's dimensions and engine displacement. The classifications of the Road Vehicles Act are used for registration statistics as well as inspections and related maintenance and repair purposes. When a vehicle exceeds any of the determining con-
ditions listed under the Road Vehicles Act, the vehicle is automatically placed in the model category above.
The Road Traffic Act, which divides vehicles and motorcycles into two categories each, determines the classification of drivers' licenses.

Recreational vehicles (RVs) that are based on passenger car chassis are classified as passenger cars, while RVs that are based on truck chassis are classified as commercial vehicles.

CLASSIFICATION BY THE ROAD VEHICLES ACT
Standard

(Over 2000cc in engine displacement)

Small

(661cc to 2000cc in engine displacement)

CLASSIFICATION BY THE ROAD TRAFFIC ACT

Large Motor Vehicles

Gross vehicle weight 8 tons or more
Maximum payload 5 tons or more or Occupants $\quad 11$ persons or more

Ordinary Motor Vehicles

Gross vehicle weight less than 8 tons
Maximum payload less than 5 tons or Occupants less than 11 persons

Mini

(660cc and under in engine displacement)
Note: Maximum length and width of mini-vehicles are scheduled to be altered -up to $3.4 m$ and 1.48 m , respectively.

CLASSIFICATION OF MOTORCYCLES

Road Vehicles Act						Road Traffic Act	
Type		Engine Displacement	Width	Height	Length	Type	Engine Displacement
Two-wheeled motor vehicles	Small-sized	Over 250cc	Over 1.3m	Over 2.0m	Over 2.5 m	Two-wheeled motor vehicles	Over 50cc
	Mini-sized	126 to 250cc	1.3 m and under	2.0 m and under	2.5 m and under		
Motor-driven cycles	Class 2	51 cc to 125cc	1.3 m and under	2.0 m and under	2.5 m and under		
	Class 1	50 cc and under	1.3 m and under	2.0 m and under	2.5 m and under	Motor-driven cycles	50cc and under

Note: A motorcycle that exceeds any one of the requisites for a category is classified in the higher category.

Domestic Taxes on Automobiles

A national tax (the Consumption Tax) and a municipal tax (the Acquisition Tax) are assessed on the purchase of passenger cars for private use in Japan. In addition to fuel taxes, a national tax (the Tonnage Tax) and a municipal tax (the Automobile Tax) apply every year the car is owned. These taxes apply equally to imported and domestically produced vehicles.
The structure of Japan's vehicle taxes has undergone many revisions since the 1950s. The national Consumption Tax is the tax that most affects domestic sales of motor vehicles. First instituted in 1989, this tax replaced a Commodity Tax on certain high-priced items, including the ex-factory or CIF prices of passenger cars, at rates ranging from 15.5 to 23%. Whereas a 3% tax rate was applied to most goods and services, a 6% tax was levied on the purchase of all automobiles except minicars.

The consumption tax on autos was reduced to 4.5\%
in April 1992 as part of the economic stimulus measures applied by the Japanese government. In April of 1994, it was further reduced to 3%, equal to the level that applied to all other goods and services. The consumption tax on goods and services was increased to 5% in April of 1997, which prompted a spate of anticipatory purchases as buyers tried to beat the tax hike by buying just ahead of the scheduled increase.

In view of the fact that Japan's auto-related taxes are among the highest in the industrialized world, JAM A has been lobbying for tax cuts applying to the purchase and ownership of vehicles. Specifically, the association is calling for the abolition of the Acquisition Tax, which is perceived as double taxation, as both it and the Consumption Tax are essentially sales taxes. In addition, JAMA has called for a reduction of the temporary tax on GVW (currently standing at $¥ 6,300$ per 0.5 ton), which was originally due to expire in April 1998.

AUTOMOBILE-RELATED TAXES (Passenger Cars for Private Use, as of April 1997)

Automobile Certification and Standards

Japan has in recent years undertaken wide-ranging measures designed to streamline the regulatory system in the areas of automobile certification and standards. The objective has been to facilitate and ensure unhindered market access by foreign manufacturers.
Japan's automobile market is not restricted by customs duties, quotas or local content requirements of any kind, and auto imports receive equal and, in some cases, preferential treatment with regard to taxes, insurance premiums and the standards and certification system.

Automobile Certification

The main certification process in Japan is the Type Designation System (TDS). It applies equally to imported and domestic vehicles and is applied to most mass-produced models. The Preferential Handling Procedure for Imported Motor Vehicles (PHP) is an alternative system used to expedite the certification of cars imported in small quantities. In 1992, the PH P ceiling was raised to 2,000 units a year. The Type Notification System, a third motor vehicle certification system, applies primarily to large trucks.

AUTOMOBILE CERTIFICATION SYSTEM IN JAPAN

THE TYPE DESIGNATION SYSTEM

- Applies equally to domestic and imported vehicles.
- Requires less documentation and time than the equivalent procedure in any other country.

Maker or importer applies to the Ministry of Transport (MOT).
The ministry checks documentation, one sample vehicle, and the maker's quality control system. Certification process completed within two months.

- Following approved certifications, the maker inspects individual vehicles upon completion and MOT makes periodic inspection of the maker's quality control system.
Features of the Type Designation System designed to facilitate imports include:
- MOT engineers are dispatched at Japanese government expense to conduct certification tests on sample vehicles abroad.
- MOT is accepting an increasing amount of test results from a growing list of designated foreign institutes.
- In some instances data obtained from tests on similar vehicles can be accepted.
- A grace period is routinely given to imports on implementation of new domestic standards.

THE PREFERENTIAL HANDLING PROCEDURE FOR IMPORTED MOTOR VEHICLES

- Used for any individual model imported to Japan in quantities of less than 2,000 units a year.
- Simpler and faster than the Type Designation System.

Maker or importer applies to MOT.
MOT checks documentation only and completes the certification process within one month.

- Following approved certifications, MOT inspects individual vehicles at MOT facilities or at dealerships in Japan prior to registration.
Features of the Preferential Handling Procedure for Imported Motor Vehicles designed to facilitate imports include:
- Exhaust emission and noise level tests can be carried out at maker's home facilities under the supervision of MOT-approved inspectors.
- MOT is accepting an increasing amount of test results from a growing list of designated foreign institutes.
- In some instances data obtained from tests on similar vehicles can be accepted.
- Minor changes in vehicle specifications do not have to be reported.

EFFECTIVE DUTIES IN JAPAN, THE U.S. AND THE EUROPEAN UNION (as of April 1997)

	Japan	U.S.	European Union
Passenger Cars	0%	2.5%	10%
Commercial Vehicles	0%	25%	Class I: 22%, Class II: 11%

Note: Class I refers to gasoline-fueled trucks of 2800cc or more, and diesel-fueled trucks of 2500cc or more. Class II refers to gasoline-fueled trucks of less than 2800 cc, and diesel-fueled trucks of less than 2500cc.

As sales of imported cars remain basically on the upswing, more models will undergo TDS. The Japanese government provides additional support by stationing Ministry of Transport (MOT) officials overseas on a permanent basis. Performing type designation tests locally, in liaison with MOT, these officials provide foreign automakers with guidance and technical consultation on standards and certification matters.

Harmonization of Motor Vehicle Standards

Automobile standards currently vary from country to country. The international harmonization of standards is being encouraged to ease the burden on manufacturers, which must ensure compliance with local regulations in all of their markets.

MOT, working in collaboration with other government agencies, has been overseeing Japan's efforts to harmonize its rules with international standards. MOT is an active participant in the Group of Experts on the Construction of Vehicles, of the United Na tions Economic Commission for Europe (ECE/ WP29), the principal international forum for harmonization issues.

In consultation with its counterparts in other nations, MOT has spearheaded the drive to adjust many Japanese standards to make them compatible with those of other countries. By the same token, the Ministry has declared various foreign standards to be equivalent to Japan's, and accepts data compiled by designated foreign testing institutes. The implementation of such initiatives will continue to be promoted, in accordance with Japan's deregulation program. As of March 1995, 26 foreign standards had been accepted as equivalent to Japanese standards.

In 1995, the Japanese government announced its intention to participate in the UN-ECE 1958 Agreement, which allows reciprocal recognition of certification among various countries. When the process of joining the Agreement has been completed and Japan becomes an official member (scheduled for 1998), domestic certification procedures for items already certified in other member countries will be eliminated.

JASIC

The Japan Automobile Standards Internationalization Center (JASIC) was established in 1987 in a cooperative public-private sector initiative to promote the harmonization of standards and to help to improve standards certification systems in developing countries through the collection and dissemination of
data on inspections, surveys, and related information.
In March 1988, JASIC opened an office in Geneva, where the WP29 conferences have been held. There it plays a key role in cooperating in the creation of internationally harmonized standards for Iamps, brakes, and other equipment while maintaining close liaison with the countries concerned.

In association with Asian governments, JASIC sponsors conferences on automobile safety standards, emission regulations, and inspection systems. It also dispatches experts to Asian countries to discuss the issues raised at these conferences.

JASIC promotes standards harmonization activities in the APEC (Asia-Pacific Economic Cooperation) region by undertaking surveys of standards within the region at the request of APEC authorities. It also publishes an annual bluebook on Japan's Type Designation System for automobiles. This handbook, which covers laws and procurement related to standards and certification, is intended to spread awareness and understanding overseas concerning standards and certification in Japan.

Motor Vehicle Inspection System

The motor vehicle inspection system (familiarly known as the "shaken system") consists of periodic vehicle checks mandated under the Road Vehicles Act to verify that the vehicle complies with technical standards related to safety and the protection of the environment.

For passenger cars, the New Car Inspection (initial shaken inspection), which is valid for three years, may be carried out at any MOT Land Transport Office or office for the registration of automobile shaken inspections. In cases where the model has received Type Designation approval, all the owner needs to do is present the attestation issued by the automaker that the vehicle has passed the complete vehicle inspection. There is no need to present that actual vehicle for inspection.

In cases in which New Type Notification or the Preferential H andling Procedure for Imported M otor Vehicles (PHP) apply, the actual vehicle must be presented to verify that it has received approval.

The Continuing Inspection (shaken inspections after the initial New Car Inspection), which is valid for two years, may be carried out at any L and Transport Office or at any designated service garage that is qualified to conduct the shaken inspection, whichever is more convenient.

Laws and Regulations Concerning Automobiles

The chart below outlines the systemic relationships of the various laws and regulations governing motor vehicles in Japan, which are formulated to ensure motor vehicle traffic safety, prevent pollution, assist victims of traffic accidents, and promote the efficient
use of resources. The laws and regulations are classified into three categories: those covering motor vehicle structure and equipment, those pertaining to people (drivers and pedestrians), and those pertaining to roads.

Attention to the Environment

Japan's automakers have long taken a responsible, responsive attitude towards environmental issues. Working through JAMA, as well as individually, they are undertaking positive, concerted efforts to respond to the challenge of ameliorating the environmental impact of the vehicles they produce and the manufacturing process itself.

JAMA's role and objective is to enable Japanese automakers to implement decisive, effective measures across the board, from development and design, through manufacturing and sales, to the eventual scrapping and recycling of their products.

The U nited Nations Framework Convention on Climate Change/ COP3, a conference on global warming held in Kyoto in December 1997, set targetsfor the reduction of greenhouse gases. To attain these targets, the Japanese automobile industry bears a heavy responsibility for the development, production, and popularization of vehicles that are friendly to the environment, and it is now acting on its intention to accelerate the introduction of cars featuring greatly improved fuel efficiency and the use of alternative energy technologies.

Nonetheless, vehicle-by-vehicle improvements in fuel economy undertaken by the automobile industry will not be sufficient to achieve effective reductions of CO_{2} emissions. A bolder, broader approach that covers the entire transportation sector will be needed, one that results in more efficient transportation, facilitates the flow of traffic as a result of improvements in traffic infrastructure, and cultivates an attitude of energy-saving among vehicle users. Towards this end, the industry is cooperating with pertinent institutions in the study and development of ITS (Intelligent Transport Systems; see page 29), and is expanding its efforts in the research of measures that will increase goods distribution efficiency and improve traffic flow.

Fuel efficiency: Although Japanese automakers have achieved outstanding progress in developing fuel-efficient technologies, the increasing demand for larger vehicles has had a negative effect on fuel consumption per vehicle. Automakers are therefore seeking further improvements in the areas of fuel economy, vehicle safety and exhaust emission levels in order to achieve the fuel efficiency targets for gasoline passenger cars for the year 2000 that were established by the Ministry of Transport and the Ministry of International Trade and Industry in 1993 (a separate fuel efficiency target for gasoline-powered commercial vehicles for the year 2003 was established in 1996).

As always, Japanese automakers are pursuing step-by-step increases in fuel efficiency. The areas promising the biggest increases are improvements in engine efficiency through the application of multivalve, DOHC and other technologies, further reductions in vehicle weight, and the wider application of electronic control technology.

Other fuel-saving technologies, such as lean-burn, direct injection, Miller-cycle, and hybrid systems, are also being implemented.

Emissions: Japanese motor vehicle exhaust emission standards, which are among the most stringent in the world, date from the late 1970s, when over 90% reductions in carbon monoxide (CO), nitrogen oxides (NOx) and hydrocarbons (HC) were implemented. Additional requirements were announced in mid1997 by the Central Council for the Environment to reduce $\mathrm{CO}, \mathrm{NOx}$ and HC emissions by a further 70% by early 2003. The Council's next recommendation is expected to mandate reductions in $\mathrm{CO}, \mathrm{NOx}, \mathrm{HC}$, particulate matter (PM) and smoke emissions from diesel-powered vehicles.

The automakers must draw extensively on their

EXHAUST EMISSIONS STANDARDS IN JAPAN

			CO	HC	NOx	Particulate Matter	Smoke
Gasolinepowered vehicles	Passenger Cars		$2.70 \mathrm{~g} / \mathrm{km}$	$0.39 \mathrm{~g} / \mathrm{km}$	$0.48 \mathrm{~g} / \mathrm{km}$	N.A.	N.A.
	Commercial Vehicles	$\mathrm{GVW} \leq 1.7 \mathrm{t}$	$2.70 \mathrm{~g} / \mathrm{km}$	$0.39 \mathrm{~g} / \mathrm{km}$	$0.48 \mathrm{~g} / \mathrm{km}$		
		$1.7<$ GVW ≤ 2.5 t	$17.0 \mathrm{~g} / \mathrm{km}$	$2.70 \mathrm{~g} / \mathrm{km}$	$0.63 \mathrm{~g} / \mathrm{km}$		
		2.5t < GVW	$136 \mathrm{~g} / \mathrm{kWh}$	$7.9 \mathrm{~g} / \mathrm{kWh}$	$5.9 \mathrm{~g} / \mathrm{kWh}$		
Dieselpowered vehicles	Passenger Cars		$2.70 \mathrm{~g} / \mathrm{km}$	$0.62 \mathrm{~g} / \mathrm{km}$	$0.55 \mathrm{~g} / \mathrm{km}$ *	$0.14 \mathrm{~g} / \mathrm{km}{ }^{*}$	25\%*
	Commercial Vehicles	GVW $\leq 1.7 \mathrm{t}$	$2.70 \mathrm{~g} / \mathrm{km}$	$0.62 \mathrm{~g} / \mathrm{km}$	$0.55 \mathrm{~g} / \mathrm{km}$	$0.14 \mathrm{~g} / \mathrm{km}$	25\%
		$1.7<$ GVW $\leq 2.5 \mathrm{t}$	$2.70 \mathrm{~g} / \mathrm{km}$	$0.62 \mathrm{~g} / \mathrm{km}$	$0.55 \mathrm{~g} / \mathrm{km}^{* *}$	$0.18 \mathrm{~g} / \mathrm{km}{ }^{* *}$	25\%**
		2.5 t < GVW	$9.2 \mathrm{~g} / \mathrm{kWh}$	$3.8 \mathrm{~g} / \mathrm{kWh}$	$5.8 \mathrm{~g} / \mathrm{kWh}^{* * *}$	$0.49 \mathrm{~g} / \mathrm{kWh}{ }^{* * *}$	25\%***

[^4]R\＆D resources to meet these demands．In doing so， they vigorously confront every challenge involved in the improvement of combustion－engine technology， including the entire emission process．Here their achievements include exhaust gas recirculation sys－ tems，catalytic converters with O_{2} sen sors，and a ce－ ramic filtering system that eliminates up to 100% of the smoke from diesel engines and reduces particu－ late matter by approximately 80% ．In addition，die－ sel engines are now appearing that are equipped with common－rail－type electronic fuel injection systems． Such systems，which feature high pressure injection， are completely different from conventional fuel injec－ tion systems．As such，they are expected to dramati－ cally reduce both NOx and PM emissions．

Alternative energy technologies：Already approxi－ mately 2,300 electric vehicles（ EV s）are on Japanese roads today，and more sophisticated EVs are being introduced into the market．Hybrid vehicles that con－ vert braking energy into either electricity or hydrau－ lic pressure are also being introduced．In December 1997，to much acclaim，hybrid vehicles equipped with both a gasoline engine and an electric motor were placed on sale in Japan，marking the world＇sfirst mass
production and commercialization of these environ－ mentally friendly vehicles．A significant number of de－ livery trucks and city buses，which must constantly ac－ celerate and decelerate，have been equipped with such technology．In Japan many urban taxis operate on liquefied petroleum gas（LPG），and overall about 300，000 LPGequipped vehicles，including trucks，are currently in use．In addition，a number of vehicles on the road operate on compressed natural gas（CNG）． O ne sidelight of the 1998 Nagano Winter Olympic Games was the use of 60 CNG vehicles，which are well－ adapted for use in cold regions yet feature low emis－ sions．Meanwhile，automakers continue to fund and conduct research into methanol，hydrogen and solar－ power technologies．

Recycling：The Japanese auto industry has greatly improved its performance in recycling，with the cur－ rent system enabling 75% by weight of each vehicle to be reused or recycled．In May 1997，MITI＇sIndustrial Structure Council issued its＂Recycling Initiative＂for the recycling of end－of－life vehicles（ELVs）．Under that initiative，the ratio of recyclable parts for new vehicles will be 90% or higher and the volume of au－ tomotive shredder residue will be cut to three－fifths or

Comparison of Different Types of Clean－Energy Vehicles				Exhaust emissions				Vehicle performance	
				Urban area			Global scale	Output	Driving range
				NOx	CO／HC	CO／HC	CO_{2}		
Gasoline vehicles				\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Diesel vehicles				$\mathbf{A} \sim \triangle$	\bigcirc	A	（	\triangle	（
Clean－ energy vehicles	CNG（compressed natural gas）vehicles			\bigcirc	\bigcirc	\bigcirc	（ 0	\triangle	A
	LNG（liquefied natural gas）vehicles			\bigcirc	\bigcirc	\bigcirc	（	\triangle	\triangle
	Methanol vehicles	Otto－type eng		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\triangle
		Diesel－type en		\triangle	\bigcirc	\bigcirc	\bigcirc	\triangle	\triangle
	Hybrid vehicles	Parallel type	｜iesel engine \＆	\triangle	\bigcirc	\triangle	（0）\sim 它	\triangle	（0）\sim N
			Diesele enine \＆	\triangle	\bigcirc	\triangle	（0）\sim S	\triangle	（0）\sim I
			Otito engine \＆	O～0	O～0	O～0	（0）\sim 亿	$\triangle \sim 0$	O－
		Serial type	Otioengine \＆	O～ 0	O～0	O～0	（0）～	$\triangle \sim \bigcirc$	O～
		Serial \＆parall	Otite engine \＆	O～©	O～ 0	O～0	（0）\sim 亿	$\triangle \sim \bigcirc$	O－
	Electric vehicles			Is	is	is	is	A	A
	Fuel cell－powered vehicles			E	is	is	is	A	A
	Hydrogen vehicles			\bigcirc	A	s	A	\triangle	A
	LPG（liquefied petroleum gas）vehicles			\bigcirc	\bigcirc	\bigcirc	\bigcirc	\triangle	$\triangle \sim \bigcirc$
	Solar cars			E	is	is	E	A	A

Notes：Based on vehicle performance relative to that of gasoline vehicles（indicated as \bigcirc ）．
Exhaust emissions do not include the volume of gases generated in the fuel production process．
Key ：Inferior $\boldsymbol{\Delta} \leftarrow \triangle \leftarrow \mathrm{O} \rightarrow \mathrm{O} \rightarrow$ Superior．
less of the 1996 levels by the year 2002. Furthermore, the amount of lead used in cars is to be reduced to one-third or less of 1996 levels by the end of 2005.
JAMA plays a significant role here. For example, in keeping with its current four-year plan to promote recycling which began in 1996, JAMA has succeeded in developing dry-distillation and gasification technologies to promote reductions in the volume and the effective use of automotive shredder residue.

JAMA and the Japanese auto industry have taken other important steps to encourage recycling. These include the introduction of a uniform marking code to identify plastic parts, expansion of the use of thermoplastics that are relatively easy to recycle, and the operation of a bumper recycling program. Moreover, JAMA cooperates with industry partners to help support operations involved in the disposal of abandoned vehicles as well as a non-profit organization that promotes businesses handling the disposal of industrial waste.

Facilities and infrastructure enhancement: Japanese automakers devote much effort to improvements in recycling capability at the basic levels of the production and delivery processes. They place great emphasis on running cleaner factories, which leads to even
greater reductions in air, water, and noise pollution. A wide range of energy-saving measures have been and continue to be undertaken to bring down and stabilize factory emissions of CO 2 by the year 2000 to the levels that prevailed in 1990.

Elimination/recovery of CFCs: All automakers, having pushed hard for the complete elimination of CFC12, as mandated in the M ontreal Protocol on Substances that Deplete the Ozone Layer, succeeded in eliminating the use of this chemical by 1994, ahead of schedule. In 1991, Japan led the world in developing a car air conditioner system using the new refrigerant, HFC134a, which is not destructive to the ozone layer. In addition, other CFCs used in auto manufacturing in Japan-a forming agent used in bumpers, for example, and solvents for cleaning parts-were eliminated by 1993, also well ahead of the schedule mandated in the Montreal Protocol. A system to recover and destroy CFC refrigerantsfrom end-of-life vehicles was jointly developed by JAMA and the Japan Auto Parts Industries Association (JAPIA), and January 1998 saw the launch of a pilot project to test it in Tokyo and three neighboring prefectures. The year 2000 will see the start of efforts for the recovery and disposal of alternative CFCs.

TRENDS IN NOx EMISSIONS REDUCTION IN DIESEL-POWERED COMMERCIAL VEHICLES			
Medium-Duty Vehicles (1.7 t < GVW $\leq 2.5 \mathrm{t}$)			
	Sub-chamber	Direct Injection	
Before 1974 (No regulation)	100\%	100\%	Before 1974 (No regulation)
1974 Regulation	80\%	80\%	1974 Regulation
1977 Regulation	68\%	68\%	1977 Regulation
1979 Regulation	60\%	56\%	1979 Regulation
1982 Regulation	52\%	49\%	1983 Regulation
1988 Regulation	47\%	40\%	1988 Regulation
1994 Regulation (1.3 g/km)	47\%	26\%	1994 Regulation ($1.3 \mathrm{~g} / \mathrm{km}$)
Long-term target ($0.7 \mathrm{~g} / \mathrm{km}$)	25\%	14\%	Long-term target ($0.7 \mathrm{~g} / \mathrm{km}$)
Heavy-Duty Vehicles (2.5 t < GVW)			
	Sub-chamber	Direct Injection	
Before 1974 (No regulation)	100\%	100\%	Before 1974 (No regulation)
1974 Regulation	80\%	80\%	1974 Regulation
1977 Regulation	68\%	68\%	1977 Regulation
1979 Regulation	60\%	56\%	1979 Regulation
1982 Regulation	52\%	49\%	1983 Regulation
1989 Regulation	47\%	42\%	1988-1990 Regulation (400ppm)
1995 Regulation ($5.0 \mathrm{~g} / \mathrm{kWh}$)	46\%	35\%	1995 Regulation ($6.0 \mathrm{~g} / \mathrm{kWh}$)
Long-term target ($4.5 \mathrm{~g} / \mathrm{kWh}$)	41\%	26\%	Long-term target ($4.5 \mathrm{~g} / \mathrm{kWh}$)

Traffic Safety

Japan was jolted in 1970 by accident statistics showing 6.3 traffic fatalities and 369 injuries per 10,000 vehicles on the road. These appalling figures led to concerted efforts by government and industry to reduce their high rate, and the result was a dramatic improvement in accident statistics.

The rate of traffic fatalities and injuries per 10,000 vehicles has remained largely unchanged over the past ten years, although the number of vehicles on Japanese roads has risen steadily. In 1997, there were 9,640 traffic fatalities, a decrease of 3.0 percent from the previous year.

Traffic safety is a major priority of Japanese automakers. They are leading the way in finding innovative solutions to improve vehicle safety, in tandem with JAMA, which for its part continuously and strenuously pursues a variety of programs intended to encourage traffic safety. One of JAMA's initiatives was the establishment of a special research body designed to provide the support of experts to the activities of JAMA's Traffic Safety Committee. These efforts have resulted in a comprehensive plan of action, which is currently under way. The main aspects of the plan are described below.

Further improvements in vehicle safety features:

 Japanese automakers continue to work on advanced technologies, including car navigation systems, rearwatch devices, head-up displays and methods to alert pedestrians of intended turns, as well as on features such as anti-lock brakes and air bags, which have by now become conventional equipment. These advanced technologies are part of the industry's overall efforts to promote the establishment of intelligent transport systems (ITS) (see page 29). M anufacturers are also extending support to the Advanced Safety Vehicle program, administered by the Ministry of Transport. As of 1997, 69.3\% of passenger cars produced for the domestic market were equipped with anti-lockbrake systems, and 87.5% with driver and passenger air bags (as standard or optional equipment).

Traffic safety campaigns and educational activi-

 ties: JAMA and its member manufacturers focus their efforts on four areas: conducting driving seminars; distributing traffic safety materials; promoting PR activities; and providing support for traffic safety education. JAMA's semiannual traffic safety campaigns are an instructive example. During these campaigns, safety is widely promoted throughout the media. Individual automakers contribute by conducting driving seminars, which range from covering basic defensive driving skills to exploring the limits of participants' driving skills, as well as providing practical experience with various driving conditions and vehicle capabilities.Improving road conditions: JAMA constantly updates its proposalsto relevant government agencies on ways to enhance road conditions, based on comprehensive studies. Typical examples include presentations on the results of studies on potential road improvements, submission of JAM A proposals regarding government plans for the construction of transportation infrastructure, and reports on urban space utilization and parking problems.

Government-industry cooperation on accident analysis: The Institute for Traffic Accident Research \& Data Analysis (ITARDA) was established in 1992 as a joint initiative by the government and private sector with the objective of conducting comprehensive analysis and assessment of traffic accidents in Japan. In addition to contributing to the institute's initial funding, JAMA has been providing the institute with extensive cooperation and support, particularly in the areas of research and vehicular studies.

TRAFFIC ACCIDENT CASUALTIES (including motorcycle accident casualities)												
Year	1970	1975	1980	1985	1990	1991	1992	1993	1994	1995	1996	1997
Traffic Accidents Index	718,080 100	472,938 66	476,677 66	552,788 77	643,097 90	662,388 92	695,345 97	$724,675$ 101	$729,457$ 102	761,789 106	$771,084$ 107	779,590 108.5
Fatalities Index	$\begin{gathered} 16,765 \\ 100 \end{gathered}$	$\begin{gathered} 10,792 \\ 64 \end{gathered}$	$\begin{gathered} 8,760 \\ 52 \end{gathered}$	$\begin{gathered} 9,261 \\ 55 \end{gathered}$	$\begin{gathered} 11,227 \\ 67 \end{gathered}$	$\begin{gathered} 11,105 \\ 66 \end{gathered}$	$\begin{gathered} 11,451 \\ 68 \end{gathered}$	$\begin{gathered} 10,942 \\ 65 \end{gathered}$	$\begin{gathered} 10,649 \\ 64 \end{gathered}$	$\begin{gathered} 10,679 \\ 64 \end{gathered}$	$\begin{gathered} 9,942 \\ 59 \end{gathered}$	$\begin{gathered} 9,640 \\ 57.5 \end{gathered}$
Injuries Index	$\begin{gathered} 981,096 \\ 100 \end{gathered}$	$\begin{gathered} 622,467 \\ 63 \end{gathered}$	$\begin{gathered} 598,719 \\ 61 \end{gathered}$	$\begin{gathered} 681,346 \\ 69 \end{gathered}$	$\begin{gathered} 790,295 \\ 81 \end{gathered}$	$\begin{gathered} 810,245 \\ 83 \end{gathered}$	$\begin{gathered} 844,003 \\ 86 \end{gathered}$	$\begin{gathered} 878,633 \\ 90 \end{gathered}$	$\begin{gathered} 881,723 \\ 90 \end{gathered}$	$\begin{gathered} 922,677 \\ 94 \end{gathered}$	$\begin{gathered} 942,203 \\ 96 \end{gathered}$	$\begin{gathered} 975,481 \\ 97.5 \end{gathered}$
Vehicles in Use* (ten thousands) Index	$\begin{gathered} 2,839 \\ 100 \end{gathered}$	$\begin{gathered} 3,859 \\ 136 \end{gathered}$	$\begin{gathered} 5,225 \\ 184 \end{gathered}$	$\begin{gathered} 6,704 \\ 236 \end{gathered}$	$\begin{gathered} 7,811 \\ 275 \end{gathered}$	$\begin{gathered} 7,984 \\ 281 \end{gathered}$	$\begin{gathered} 8,109 \\ 286 \end{gathered}$	$\begin{gathered} 8,220 \\ 290 \end{gathered}$	$\begin{gathered} 8,349 \\ 294 \end{gathered}$	$\begin{gathered} 8,497 \\ 299 \end{gathered}$	$\begin{gathered} 8,655 \\ 305 \end{gathered}$	$\begin{gathered} 8,754 \\ 308 \end{gathered}$
Per 10,000 vehicles: Fatalities Injuries	$\begin{aligned} & 6.3 \\ & 369 \end{aligned}$	$\begin{array}{r} 2.9 \\ 169 \end{array}$	$\begin{aligned} & 1.8 \\ & 120 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 106 \end{aligned}$	$\begin{gathered} 1.5 \\ 105 \end{gathered}$	$\begin{gathered} 1.4 \\ 105 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 107 \end{aligned}$	$\begin{array}{r} 1.4 \\ 110 \end{array}$	$\begin{aligned} & 1.3 \\ & 109 \end{aligned}$	$\begin{array}{r} 1.3 \\ 112 \end{array}$	$\begin{aligned} & 1.2 \\ & 112 \end{aligned}$	$\begin{gathered} 1.1 \\ 111 \end{gathered}$

Note: *Figures include motor vehicles in use (as of end of December each year) and motorcycles in use (as of end of March).
Sources: National Police Agency, Ministry of Transport.

Intelligent Transport Systems

By transporting people and goods, automobiles play an essential role in contemporary society. However, certain auto-related problems-traffic accidents, congestion, environmental pollution, and massive consumption of fossil fuels-are becoming global issues that concern all humankind and urgently require solutions.

Research and development that addresses these issues is being conducted around the world, under an innovative concept known as "Intelligent Transport Systems" (ITS). The subjects of study are systems that link road infrastructure and telecommunications using computers, electronics, and advanced sensing technologies.
Japan's project initiative, which is called the Vehicle, Road, and Traffic Intelligence Society (VERTIS), was established in January 1995 with the full support of the National Police Agency, Ministry of International Trade and Industry, Ministry of Transport, Ministry of Posts and Telecommunications, and M inistry of Construction.

As a national project, VERTIS is composed of members from industrial organizations, private-sector companies, research institutes, and universities. Its current corporate membership includes representatives from Japan's leading companies in the automobile manufacturing, electronics, telecommunications, and cable and wire industries.

VERTIS has four main objectives: to promote research and development into ITS and related fields, including the deployment of ITS infrastructure; to exchange information with Europe and North America; to suggest potential applications of ITS; and to host the ITS World Congress in the Asia-Pacific region every three years.

Recent developments: The Ministry of Construction (MOC) announced in December 1995 the development of a five-year ITS strategy centered around research programs conducted jointly by automakers, NTT, and other private-sector companies. These research programs include the devel opment and implementation of an electronic toll collection system, which will be an integral part of the Automated H ighway System (AHS). Pilot studies at six toll gates have all demonstrated that the system can significantly reduce the waiting time at toll-gates. Implementation of the system is scheduled to begin around the year 2000.

AH S underwent its first tests by M O C from September through N ovember 1996 on the Shin-Etsu Expressway. In this experiment, purpose-designed vehicles made by Toyota, Nissan, Mitsubishi and H onda measured the effects of surface elevations and local highvoltage power lines on information processing and the driving performance of driver-controlled vehicles.

The target date for complete AHS with autonomous vehicles and roadway infrastructure has been set for 2010. The MOC, working in concert with the Ministry of Posts and Telecommunications, is currently seeking to complete the construction of nationwide fiberoptic information networks al ong major expressways by 2000. The Vehicle Information and Communication System (VICS), a sophisticated navigation system, has been in service since April 1996, utilizing existing fiberoptic networks. This service is available on ordinary roads in the Tokyo metropolitan area and with in 100 kilometers of Tokyo on the Tomei Expressway, which linksTokyo and Nagoya. VICS was also put to use during the February 1998 Nagano Winter Olympic Games.

Another technology known as the Universal Traffic Management System (UTMS) supplied traffic information to Games-related vehicles during the Winter Games in an effort to facilitate traffic flow.

The auto manufacturers that participated in the Advanced Safety Vehicle (ASV) project, which was supervised by the Ministry of Transport (MOT), completed their test models in 1995. Of course, the automakers' efforts are mainly focused on passenger cars. However, MOT is seeking to integrate trucks, buses, and other commercial vehicles into the ITS scheme in order to improve Japan's entire transport system.

Automotive Shipments in Value Terms (1996)

Automotive shipments are the second largest industrial sector of the Japanese economy (after electrical machinery \& equipment). By the latest accounts, they represent nearly 13% of the value of the nation's total manufacturing shipments and 29.3% of the value of the machinery industries' combined shipments. In 1996 the value of domestic automotive shipments increased 2.6% from the previous year, to $¥ 40,601$ billion.

The number of people in Japan engaged in work related to automobiles is approximately 7.1 million. Given that there are currently around 64.6 million workers in Japan, this means that about one in every ten workers is employed directly or indirectly by the automobile industry.

1996 SHIPMENTS OF
 MAJOR MANUFACTURING INDUSTRIES

<Breakdown of Automotive Shipments>

- Automobile Manufacturers (including motorcycles) 20,536
- Automobile Body \& Related Manufacturers
- Automobile Parts \& Accessories Manufacturers

[^5]
Automotive Trade

Japan's multilateral merchandise trade surplus rose 48.1% in 1997 to $¥ 9,982$ billion. Total imports showed a gain of 8.0% over 1996 to $¥ 40,956$ billion and total exports also increased 13.9% to $¥ 50,938$ billion.

In 1997, the value of motor vehicle exports (includ-
ing motorcycles and parts) increased for the second consecutive year, by 20.3% to $¥ 9,506$ billion.

The value of motor vehicle imports (including parts) declined 10.6% in 1997 to $¥ 1,190$ billion.

1997 IMPORTS BY

PRINCIPAL COMMODITY (CIF)

Import Value (millions of yen)

- Mineral Fuels $\quad \neq 7,542,456$
-Foodstuffs $\quad \neq 5,578,883$
(13.6\%)
- Raw Materials $\quad ¥ 3,557,167$
- Chemicals $\quad \neq 2,840,862$
- Metals
- Textiles
- Other

$$
\begin{array}{r}
(6.9 \%) \\
¥ 2,161,297
\end{array}
$$

$¥ 2,708,416$
(6.6%)
$¥ 5,090,810$
(12.4\%)
(billions of yen)
AUTOMOTIVE EXPORTS IN VALUE TERMS (FOB)

Year	Motor Vehicles				\% Change	Merchandise Export Total
	Four-Wheelers	Parts \& Components	Motorcycles	Subtotal		
1997	7,112.3	1,789.5	604.6	9,506.4	20.3\%	50,938.0
1996	5,513.8	1,840.5	548.9	7,903.2	9.1\%	44,731.3
1995	4,979.7	1,781.5	480.7	7,241.9	-10.9\%	41,530.9
1994	5,836.6	1,798.2	494.3	8,129.1	-7.3\%	40,497.6
1993	6,550.5	1,654.4	564.6	8,769.5	-10.4\%	40,202.4
1992	7,657.7	1,584.7	549.6	9,792.0	4.7\%	43,012.3
1991	7,370.5	1,523.9	458.9	9,353.3	0.3\%	42,359.9
1990	7,358.7	1,566.8	396.4	9,321.9	11.7\%	41,456.9
1985	8,195.1	1,242.0	624.1	10,061.2	14.4\%	41,955.7

Source: The Summary Report on Trade of Japan, Ministry of Finance.
AUTOMOTIVE IMPORTS IN VALUE TERMS (CIF)
(billions of yen)

| Year | Motor Vehicles | | | Merchandise
 Import Total |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | |

Source: The Summary Report on Trade of Japan, Ministry of Finance.

JAMA Organizationand InformationServices

The Japan Automobile M anufacturers Association, Inc. (JAMA) is a nonprofit trade association which was established in 1967. The organization is comprised of the thirteen manufacturers of cars, trucks, buses and motorcycles in Japan.

JAMA's activities are administered under the guidance of various committees composed of membercompany representatives. The administrative struc-
ture of JAMA is headed by a chairman, who is elected from among the chief executives of the member companies. Reporting to the chairman are five vice-chairmen, one of whom also serves as executive managing director; a managing director; and a secretary general. Final authority for decisions on JAMA's major activities and overall administration is vested in the Board of Directors.

Chairman
Vice-Chairmen

- Committees -

General Assembly
Board of Directors
Executive Committee
General Committees: Technical Administration Committee Research Administration Committee Safety \& Environmental Technology Committee International Affairs Committee Distribution Committee Traffic Affairs Committee Taxation Committee Public Relations Committee
Parts \& Materials Committee Factory Facilities Committee Economic Research Committee Environment Committee Electronic Information Exchange Committee

Special Vehicle Committees:
Mini-Vehicle Committee Motorcycle Committee
Heavy Vehicle Committee

- Administration -
 Executive Managing Director
 Managing Director
 Secretary General

Administration Dept.
Public Relations Dept.
Planning and Coordination Office Environment Dept.
Economic Research Dept. International Dept.
Business Affairs Dept.
Traffic Affairs Dept.
Parts and Materials Dept.
Technical Dept.
Liaison Office for International Parts and Procurement
Recycling Technologies Promotion Office
Center for CFC Recovery and Disposal

JAMA INFORMATION SERVICES

Periodicals

Motor Vehicle Statistics of Japan
Historical compilation of Japanese motor vehicle production, export, and new registration statistics.
Annual, in English.

JAMA FORUM

Independent commentary and interviews on issues involving trade and the international automotive industry. Quarterly, in English.

News from JAMA

Brief articles and current production, export, and new registration statistics. Monthly in French, English and German.

News from JAMA Motorcycle

News, views and developments related to Japan's motorcycle industry. Published quarterly, in English.

Other Publications
The Japanese Automobile Industry-On the
Move Toward Globalization
Facts, figures and trends relevant to local procurement, production and collaboration (1997).
How Japanese Automakers Contribute to the

U.S. Economy

Trends, and other data relating to sales, employment and investment in the United States (1997).
Japanese Automakers Contributing to Europe-Investing in a Common Future A detailed look at how Japanese automakers are working within the European Community to build cars in Europe for Europeans (January 1998).

Voluntary Action Plan for End-of-Life Vehicles Japanese automakers' measures as well as industrywide efforts in response to a comprehensive package to further promote the recycling of end-of-life vehicles (January 1998).

Videos

Man and the Automobile-A Look at the Future A 20-minute video on recent technology trends in the Japanese motor vehicle industry. Statistics on production, sales and exports are also included. In Japanese and English (1993, NTSC).

Automobile Recycling in 1998-Towards the

 Technology of TomorrowA 20-minute presentation which reviews the industry's voluntary initiatives to further promote end-of-life vehicle recycling, explaining the latest technologies in shredder residue processing and other systems. In Japanese and English (1998, NTSC/PAL).

[^6]
Significant Events of 1997

Domestic

- Mazda Motor Corporation announces its withdrawal from the development and production of mini-vehicles; Mazda will receive OEM supplies of mini-vehicles from Suzuki. (January)
- Number of holders of driver'slicenses in Japan tops 70 million. (March)
- Japan's Environment Agency tightens regulations on automobile emissions and introduces emission regulations on motorcycles. (March)
- MITI formulates initiative to encourage recycling of ELVs(end-of-life vehicles). (March)
- JAMA completes prototype plant for sorting and solidifying shredder residue from ELVs. (March)
- Ministry of Trade and Industry (MITI) and Ministry of Transport (MOT) set up a joint body to deliberate the introduction of fuel standards for diesel engine vehicles. (April)
- MOT formulates method for passenger escape from vehicles submerged in water. (April)
- MOT revises some vehicle safety standards and undertakesstep-by-step tightening of emission regulations. (April)
- MOT introduces system allowing vehicle owners to obtain custom license plate numbers. (April)
- Japan Automobile Manufacturers Association (JAMA) celebrates 30th anniversary of its founding. (April)
- Mr. Hiroshi Yuasa appointed president of Hino Motors, Ltd. (April)
- Mr. Toshiro Kamei appointed president of Kawasaki H eavy Industries, Ltd. (April)
- Revised law enacted on the processing of industrial waste. (June)
- Mazda Motor Corporation produces new brand logo. (June)
- Honda opens Twin Rink Motegi, a multipurpose motor sports complex. (August)
- Five government ministries and agencies formulate basic plan to improve gasoline fuel efficiency by 20% as a measure to combat global warming. (October)
- Japan and the EU agree on vehicle export framework of 1,114,000 units. (O ctober)
- 32nd Tokyo M otor Show held at Makuhari Messe trade fair grounds. (O ctober)
- Mr. James E. Miller appointed president of Mazda. (N ovember)
- Mr. Katsuhiko Kawasoe appointed president of Mitsubishi Motors. (November)

International

- Yamaha M otor Co., Ltd. establishes joint-venture company in Taiwan to conduct R\&D on motorcycles. (January)
- Mitsubishi M otors Corporation secures permission to establish a joint venture with a Chinese firm, Hunan Chang Feng Automobile Production Ltd.
(January)
- 6th JAMA/ MEMA (M otor \& Equipment Manufacturers Association) O ne-on-O ne Business M eeting held in San Francisco. (February)
- Nissan M otor Co., Ltd. holds opening ceremony for engine plant in Thailand. (February)
- H onda M otor Co., Ltd. holds opening ceremony for second joint-venture motorcycle plant in India. (February)
- JAMA announces that Japanese purchases of U.S.made auto parts reach $\$ 22.7$ billion for fiscal 1996 (April '96-M arch '97). (July)
- Mitsubishi Motors and Volvo reach formal agreement on a comprehensive tie-up for the OEM supply of compact trucks to Volvo. (O ctober)
- Japan, the U.S. and the EU issue joint statement on the international harmonization of automotive technical standards. (O ctober)
- Fourth World Congress on ITS (Intelligent Transport Systems) held in Berlin. (O ctober)
- Toyota M otor Corporation announces the creation of its second European plant in Valenciennes in northern France. (December)
- JAMA holdsETI/ Japan Technical Week Seminar in U.S. in association with the Equipment and Tool Institute (ETI). (December)

DAIHATSU MOTOR CO., LTD.

1, Daihatsu-cho 1-chome
Ikeda City, Osaka Pref. 563-8651
Tel: (0727) 51-8811
Telefax: (0727) 53-6880
Tokyo Office:
2-10, Nihonbashi Hon-cho 2-chome
Chuo-ku, Tokyo 103-8408
Tel: (03) 3279-0813
Telefax: (03) 3279-0038
Products: Cars and Trucks
Internet: http://www.daihatsu.co.jp/

FUJI HEAVY INDUSTRIES LTD.

7-2, Nishi-Shinjuku 1-chome
Shinjuku-ku, Tokyo 160-8316
Tel: (03) 3347-2111
Telefax: (03) 3347-2338
Products: Cars, Trucks and Buses
Internet: http://www.subaru-fhi.co.jp/fhi.htm
HINO MOTORS, LTD.
1-1, Hinodai 3-chome
Hino City, Tokyo 191-8860
Tel: (042) 586-5011
Telefax: (042) 586-5038
Nihonbashi Office
7-17, Nihonbashi 1-chome
Chuo-ku, Tokyo 103-8256
Tel: (03) 3272-1891
Telefax: (03) 3272-4822
Products: Trucks and Buses
Internet: http://www.hino.co.jp/
HONDA MOTOR CO., LTD.
1-1, Minami-Aoyama 2-chome
Minato-ku, Tokyo 107-8556
Tel: (03) 3423-1111
Telefax: (03) 3423-0511
Products: Cars, Trucks and Motorcycles
Internet: http://www.honda.co.jp/
ISUZU MOTORS LIMITED
26-1, Minami-Oi 6-chome
Shinagawa-ku, Tokyo 140-8722

Tel: (03) 5471-1111
Telefax: (03) 5471-1043
Products: Cars, Trucks and Buses
Internet: http://www.isuzu.co.jp/
KAWASAKI HEAVY INDUSTRIES, LTD.
Akashi Office:
1, Kawasaki-cho 1-chome
Akashi City, Hyogo Pref. 673-8666
Tel: (078) 921-1301
Telefax: (078) 371-9568
Tokyo Head Office:
World Trade Center Bldg.
4-1, Hamamatsu-cho 2-chome
Minato-ku, Tokyo 105-6116
Tel: (03) 3435-2111
Telefax: (03) 3436-3037
Products: Motorcycles
Internet: http://www.khi.co.jp/

MAZDA MOTOR CORPORATION

3-1, Shinchi, Fuchu-cho
Aki-gun, Hiroshima Pref. 730-8670
11ニ54日
Tel: (082) 282-1111
Telefax: (082) 287-5190
Tokyo Office:
Yamato Seimei BIdg.
1-7, Uchisaiwai-cho 1-chome
Chiyoda-ku, Tokyo 100-0011
Tel: (03) 3508-5031
Telefax: (03) 3508-5044
Products: Cars, Trucks and Buses
Internet: http://www.mazda.com/

Plant Locations of Member Manufacturers in Japan

RelatedAutomotiveAssociations

J apan Motor Industrial Federation Inc. (J MIF)

Otemachi Bldg., 6-1, Otemachi 1-chome
Chiyoda-ku, Tokyo 100-0004
Tel: (03) 3211-8829
Telefax: (03) 3211-8829
Internet: http://www.motorshow.or.J P/
Objectives: To organize the biennial Tokyo M otor show, to publish books and to produce videotapes that promote the automotive industry.

J apan Auto Parts Industries Association (J APIA)

16-15, Takanawa 1-chome
Minato-ku, Tokyo 108-0074
Tel: (03) 3445-4211
Telefax: (03) 3447-5372
Objectives: To establish and promote policies to streamline parts manufacturing, and to research, develop and improve production engineering.

J apan Auto-Body Industries Association, Inc. (J ABIA)
Kishimoto Bldg., 2-1 Marunouchi 2-chome
Chiyoda-ku, Tokyo 100-0005
Tel: (03) 3213-2031
Telefax: (03) 3213-2034
Objectives: To research and promote policies to streamline auto-body manufacturing and assembly.

J apan Automotive Machinery and Tool Manufacturers Association (J AMTA)

Kikaishinko Bldg.
5-8, Shibakoen 3-chome
Minato-ku, Tokyo 105-0011
Tel: (03) 3431-3773 Telefax: (03) 3431-5880
Objectives: To conduct research on the engineering technology of automotive servicing equipment and tools, and to disseminate the resulting information among its members.

J apan Electric Vehicle Association (J EVA)
22-15, Toranomon 1-chome
Minato-ku, Tokyo 105-0001
Tel: (03) 3503-3651
Telefax: (03) 3503-8493
Objectives: To promote the utilization of electric vehicles, and conduct information-gathering and analysis on electric vehicles at home and abroad.

J apan Automobile Research Institute, Inc.

 (J ARI)Rotary Bldg. 27, Kanda-Nishiki-cho 1-chome
Chiyoda-ku, Tokyo 101-0054
Tel: (03) 3293-9123
Telefax: (03) 3295-2386
Laboratory:
2530 Karima, Tsukuba City
Ibaraki Pref. 305-0822
Tel: (0298) 56-1111
Objectives: To conduct comprehensive research aimed at the long-range development of automotive technologies, including safety, emissions, noise and vibration.

Society of Automotive Engineers of J apan, Inc. (J SAE)
10-2, Goban-cho, Chiyoda-ku, Tokyo 102-0076
Tel: (03) 3262-8211
Telefax: (03) 3261-2204
Objectives: To research, study and experiment in automotive science and technologies.

J apan Automobile Dealers Association

 (J ADA)7-17, Minami-Aoyama 5-chome
Minato-ku, Tokyo 107-0062
Tel: (03) 3400-8404
Telefax: (03) 3400-8413
Objectives: To promote the use of automobiles and improve their distribution, thereby contributing to the development of the national economy.
J apan Automobile Importers Association (J AIA)
TBR Bldg., 5-7 Kojimachi
Chiyoda-ku, Tokyo 102-0083
Tel: (03) 3222-5421
Telefax: (03) 3222-1730
Objectives: To establish orderly import transactions and advance the interests of member companies, thereby promoting the growth of automobile import businesses.
J apan Automobile Federation (J AF)
Kikaishinnko Kaikan, Room 103
5-8, Shibakoen 3-chome
Minato-ku, Tokyo 105-0014
Tel: (03) 3436-2811
Telefax: (03) 3436-3008
Objectives: To promote an understanding of traffic issues and traffic safety, protect the interests of members, encourage international friendship through automobiles, and develop motor sports programs, thereby contributing to the welfare of the public.
J apan Automobile Service Promotion Association (J ASPA)
1-16, Moto-Akasaka 1-chome
Minato-ku, Tokyo 107-0051
Tel: (03) 3404-6141
Telefax: (03) 3404-6478
Objectives: To promote the advancement of automobile service technologies and equipment, in order to help prevent automobile accidents and pollution.
J apan Automobile Standards Internationalization Center (J ASIC)
TBR Bldg., 5-7 Kojimachi
Chiyoda-ku, Tokyo 102-0083
Tel: (03) 5216-7241
Telefax: (03) 5216-7244
Objectives: To promote the harmonization of standards and to help to improve standards certification systems in developing countries through the collection and dissemination of data on inspections, surveys, and related information.

[^0]: Note: Percentage figures represent the change from the preceding year.

[^1]: Note: Percentage figures represent the change from the preceding year.

[^2]: Note: Percentage figures regresent the change from the preceding year.

[^3]: Note: *The joint production agreement with VW was terminated in February 1997.
 Source: Automobile industry associations from each country.

[^4]: Notes: $\quad{ }^{*}$ Figures are applicable to models of 1250 kg < EIW (Equivalent Inertia Weight) from October 1998.
 ${ }_{* * *}^{* *}$ Figures are applicable to automatic transmission models from October 1998.
 *** Figures are applicable to models of $3.5 t \leq$ GVW $<12 t$ from October 1998 and to models of $12 t<$ GVW from October GVW = Gross Vehicle Weight Figures are applicable to new domestic models. Existing domestic models and imports are granted certain grace periods on part of the above standards. Sources: Ministry of Transport, Environment Agency.

[^5]: Source: Industry Statistics, Ministry of International Trade and Industry.

[^6]: Note: Publications can be obtained from JAMA free of charge by contacting any of the offices listed inside the cover of this booklet. For information on video availability, please contact JAMA's head office.

